Если функция ни четная ни нечетная. Четные и нечетные функции

Четные и нечетные функции

Презентация к уроку

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • сформировать понятие чётности и нечётности функции, учить умению определять и использовать эти свойства при исследовании функций, построении графиков;
  • развивать творческую активность учащихся, логическое мышление, умение сравнивать, обобщать;
  • воспитывать трудолюбие, математическую культуру; развивать коммуникативные качества.

Оборудование: мультимедийная установка, интерактивная доска, раздаточный материал.

Формы работы: фронтальная и групповая с элементами поисково-исследовательской деятельности.

Информационные источники:

1.Алгебра9класс А.Г Мордкович. Учебник.
2.Алгебра 9класс А.Г Мордкович. Задачник.
3.Алгебра 9 класс. Задания для обучения и развития учащихся. Беленкова Е.Ю. Лебединцева Е.А

1. Организационный момент

Постановка целей и задач урока.

2. Проверка домашнего задания

№10.17 (Задачник 9кл. А.Г. Мордкович).

а) у = f(х), f(х) =

3. Актуализация знаний

– Даны функции.
– Указать область определения для каждой функции.
– Сравнить значение каждой функции для каждой пары значения аргумента: 1 и – 1; 2 и – 2.
– Для каких из данных функций в области определения выполняются равенства f(– х) = f(х), f(– х) = – f(х)? (полученные данные занести в таблицу) Слайд

и 0

и не опред.

4. Новый материал

– Выполняя данную работу, ребята мы выявили ещё одно свойство функции, незнакомое вам, но не менее важное, чем остальные – это чётность и нечетность функции. Запишите тему урока: «Чётные и нечётные функции», наша задача – научиться определять чётность и нечётность функции, выяснить значимость этого свойства в исследовании функций и построении графиков.
Итак, найдём определения в учебнике и прочитаем (стр. 110). Слайд

Опр. 1 Функция у = f (х), заданная на множестве Х называется чётной, если для любого значения х Є Х выполняется равенство f(–х)= f(х). Приведите примеры.

Опр. 2 Функция у = f (х), заданная на множестве Х называется нечётной, если для любого значения х Є Х выполняется равенство f(–х)= –f(х). Приведите примеры.

Где мы встречались с терминами «четные» и «нечётные»?
Какие из данных функций будут чётными, как вы думаете? Почему? Какие нечётными? Почему?
Для любой функции вида у = х n , где n – целое число можно утверждать, что функция нечётна при n – нечётном и функция чётна при n – чётном.
– Функции вида у = и у = 2х – 3 не являются ни чётным , ни нечётными, т.к. не выполняются равенства f(– х) = – f(х), f(– х) = f(х)

Изучение вопроса о том, является ли функция чётной или нечётной называют исследованием функции на чётность. Слайд

В определениях 1 и 2 шла речь о значениях функции при х и – х, тем самым предполагается, что функция определена и при значении х, и при – х.

Опр 3. Если числовое множество вместе с каждым своим элементом х содержит и противоположный элемент –х, то множество Х называют симметричным множеством.

(–2;2), [–5;5]; (∞;∞) – симметричные множества, а [0; ∞), (2;–2], [–5;4] – несимметричные.

– У чётных функций область определения – симметричное множество? У нечётных?
– Если же D(f) – несимметричное множество, то функция какая?
– Таким образом, если функция у = f(х) – чётная или нечётная, то её область определения D(f) – симметричное множество. А верно ли обратное утверждение, если область определения функции симметричное множество, то она чётна, либо нечётна?
– Значит наличие симметричного множества области определения – это необходимое условие, но недостаточное.
– Так как же исследовать функцию на четность? Давайте попробуем составить алгоритм.

Слайд

Алгоритм исследования функции на чётность

1. Установить, симметрична ли область определения функции. Если нет, то функция не является ни чётной, ни нечётной. Если да, то перейти к шагу 2 алгоритма.

2. Составить выражение для f(– х).

Примеры:

Исследовать на чётность функцию а) у = х 5 +; б) у = ; в) у= .

а) h(х) = х 5 +,

1) D(h) = (–∞; 0) U (0; +∞), симметричное множество.

2) h (– х) = (–х) 5 + – х5 –= – (х 5 +),

3) h(– х) = – h (х) => функция h(х) = х 5 + нечётная.

б) у = ,

у = f(х), D(f) = (–∞; –9)? (–9; +∞), несимметричное множество, значит функция ни чётная, ни нечётная.

в) f(х) = , у = f (х),

1) D(f) = (–∞; 3] ≠ [3; +∞), симметричное множество.

2)f (– х) == ;

3) f (– х) = f (х) => функция f(х) = чётная.

Итак, по аналитической записи можно определить четность функции? Но кроме аналитического способа задания функции есть другие. Какие? Можно ли по графику функции выявить её четность? Давайте вернёмся к заданию, которое мы выполняли в начале урока, найдём соответствие между аналитически заданными функциями и их графиками (изображёнными на доске), что вы находите примечательного в расположении графиков чётных функций? Нечётных?

Вывод:

  1. График чётной функции симметричен относительно оси у.
  2. График нечётной функции симметричен относительно начала координат.
Читать еще:  Не могу найти работу – что делать? Не могу найти работу: что делать.

– Верны ли обратные утверждения?

  1. Если график функции у = f(х) симметричен относительно оси ординат, то у = f(х) – чётная функция.
  2. Если график функции у = f(х) симметричен относительно начала координат, то у = f(х) – нечётная функция.

Доказательство данных утверждений разобрать дома самостоятельно по учебнику и записать в тетрадь.

– Какова же значимость свойства четности или нечётности функции? Зачем нужно изучать
свойство чётности функций .В план свойств функций свойство чётности вы поставили бы на какое порядковое место

5. Первичное закрепление

Самостоятельная работа

1. Является ли симметричным заданное множество: а) [–7;7]; б) (∞; –2), (–4; 4]?

1. Является ли симметричным заданное множество: а) [–2;2]; б) (∞; 0], (0; 7) ?

а) у = х 2 · (2х – х 3 ), б) у =

Взаимопроверка по слайду.

6. Задание на дом: №11.11, 11.21,11.22;

Доказательство геометрического смысла свойства чётности.

***(Задание варианта ЕГЭ ).

1. Нечётная функция у = f(х) определена на всей числовой прямой. Для всякого неотрицательного значения переменной х значение этой функции совпадает со значением функции g(х) = х(х + 1)(х + 3)(х – 7). Найдите значение функции h(х) = при х = 3.

Четные и нечетные функции

Функция называется четной, если ее область определения симметрична относительно нуля и для любого x из ее области определения выполняется равенство

График четной функции симметричен относительно оси ординат.

Например, — четные функции.

Функция называется нечетной, если ее область определения симметрична относительно нуля и для любогоxиз ее области определения выполняется равенство

График нечетной функции симметричен относительно начала координат.

Например, — нечетные функции.

Функции, не являющиеся ни четными, ни нечетными, называются функциями общего вида.

Если вы учитесь в матклассе или на первом курсе вуза — вам могут встретиться вот такие задания:

1. Проверьте, является ли функция четной (нечетной).

Область определения функции

Проверим, является ли чётной или нечётной. Если функция четна. Если функция нечетна.

— значит, функция нечётная, её график симметричен относительно нуля.

2. Проверьте, является ли функция четной (нечетной)

Область определения: все действительные числа.

— чётная, как сумма двух чётных функций.

Её график симметричен относительно оси y.

3. Проверьте, является ли функция четной (нечетной).

Область определения функции симметрична относительно нуля.

— чётная, её график симметричен относительно оси y.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Обучающее видео
БЕСПЛАТНО

Техническая поддержка:
help@ege-study.ru (круглосуточно)

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Все поля обязательны для заполнения

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса – от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум – репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля – до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Читать еще:  Скумбрия на костре на решетке. Как приготовить скумбрию на костре на решетке

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги – 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» – всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

Это пробная версия онлайн курса по профильной математике.

Вы получите доступ к 3 темам, которые помогут понять принцип обучения, работу платформы и оценить ведущую курса Анну Малкову.

— 3 темы курса (из 50).
— Текстовый учебник с видеопримерами.
— Мастер-класс Анны Малковой.
— Тренажер для отработки задач.

Регистрируйтесь, это бесплатно!

Нажимая на кнопку, вы даете согласие на обработку своих персональных данных

Четные и нечетные функции

Четные и нечетные функции

В предыдущем параграфе мы обсуждали только те свойства функций, которые в той или иной степени были вам знакомы. Там же было замечено, что запас свойств функций будет постепенно пополняться. О двух новых свойствах и пойдет речь в настоящем параграфе.

Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х).

Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х).

Доказать, что у = х 4 — четная функция.

Решение. Имеем: f(х) = х 4 , f(-х) = (-х) 4 . Но (-х) 4 = х 4 . Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной.

Аналогично можно доказать, что функции у — х 2 ,у = х 6 ,у — х 8 являются четными.

Доказать, что у = х 3

Решение. Имеем: f(х) = х 3 , f(-х) = (-х) 3 . Но (-х) 3 = -х 3 . Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной.

Аналогично можно доказать, что функции у = х, у = х 5 , у = х 7 являются нечетными.

Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у — х 3 , у = х 5 , у = х 7 — нечетные функции, тогда как у = х 2 , у = х 4 , у = х 6 — четные функции. И вообще для любой функции вида у = х” (ниже мы специально займемся изучением этих функций), где n — натуральное число, можно сделать вывод: если n — нечетное число, то функция у = х” — нечетная; если же n — четное число, то функция у = хn — четная.

Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х).

Итак, функция может быть четной, нечетной, а также ни той ни другой.

Изучение вопроса о том, является ли заданная функция четной или нечетной, обычно называют исследованием функции на четность.

В определениях 1 и 2 речь идет о значениях функции в точках х и -х. Тем самым предполагается, что функция определена и в точке х, и в точке -х. Это значит, что точка -х принадлежит области определения функции одновременно с точкой х. Если числовое множество X вместе с каждым своим элементом х содержит и противоположный элемент -х, то X называют симметричным множеством. Скажем, (-2, 2), [-5, 5], (-оо, +оо) — симметричные множества, в то время как [0, +оо), (-2, 3), [-5, 5) — несимметричные множества. Если функция у = f (х) — четная или нечетная, то ее область определения D (f) — симметричное множество. Если же D (f) — несимметричное множество, то функция у = f(х) не является ни четной, ни нечетной.

Учитывая сказанное, рекомендуем при исследовании функции на четность использовать следующий алгоритм.

Алгоритм исследования функции у = f(х) на четность

1. Установить, симметрична ли область определения функции. Если нет, то объявить, что функция не является ни четной, ни нечетной. Если да, то переходить ко второму шагу алгоритма.
2. Найти f(-х).
3. Сравнить f (x)= f (-x)

Читать еще:  Примеры решения бином ньютона. Полное число подмножеств

а) если f(-х) = f(х), то функция — четная,
б) если f(-х) = -f(х), то функция — нечетная;
в) если хотя бы в одной точке х є Х выполняется соотношение f(-х) = f(х) и хотя бы в одной точке х є X выполняется соотношение f(-х) = -f(х), то функция не является ни четной, ни нечетной.

Исследовать на четность функцию:

а) у = f(x), где
1) Функция определена при всех значениях х, кроме х = 0. Следовательно,D (f) — симметричное множество.
2)
3) Замечаем, что для любого ж из области определения функции выполняется равенство f(x) = f(x).
Таким образом, четная функция.
б)
1) Функция определена при всех значениях х, кроме х = 0. Следовательно, D(f) — симметричное множество.
2)
3) Замечаем, что для любого х из области определения функции выполняется равенство f(-х) = -f(х).
Таким образом,
в)
1) Функция определена во всех точках х, кроме тех, которые обращают знаменатель дроби в нуль. Из условия х 2 – 9 = 0 находим х = ± 3. Значит, область определения функции — числовая прямая, из которой удалены две точки: 3 и -3. Это — симметричное множество.
2)
3) Сравнив f(-х) и f(х), замечаем, что, скорее всего, не выполняются ни тождество f(-х) = f(х), ни тождество f(-х) = -f(х). Чтобы в этом убедиться, возьмем конкретное значение х, например х = 4. Имеем: f(4) = О, а Таким образом, функция не является ни четной, ни нечетной.
г) Функция определена при условии т.е. на луче [3, +оо). Этот луч — несимметричное множество, значит, функция не является ни четной, ни нечетной.

Исследовать на четность функцию:

а) D(f) = [-2,2) — симметричное множество, и для всех х выполняется равенство | -х | = | х |. Значит, заданная функция — четная.

б) D(f) = [-3, 3) — несимметричное множество. В самом деле, точка -3 принадлежит полуинтервалу [-3, 3), а противоположная точка 3 не принадлежит этому полуинтервалу. Значит, функция не является ни четной, ни нечетной.

в) D (f) = (-5, 5) — симметричное множество и (-x) 3 = -ж 3 для всех х из интервала (-5, 5). Значит, заданная функция — нечетная.
г) Функция задана на полуинтервале, который не является симметричным множеством. Значит, функция — ни четная, ни нечетная.

Теперь обсудим геометрический смысл свойства четности и свойства нечетности функции.

Пусть у = f(x) — четная функция, т.е. f(x) = f(х) для любого х е . Рассмотрим две точки графика функции: D(х; f(х)) и В(-х; f(-х)). Так как f(-х) = f(х), то у точек А и В абсциссы являются противоположными числами, а ординаты одинаковы. Эти точки симметричны относительно оси у (рис. 73). Таким образом, для каждой точки А графика четной функции у = f(х) существует симметричная ей относительно оси у точка В того же графика. Это означает, что график четной функции симметричен относительно оси у.

Пусть у = f(х) — нечетная функция, т.е. f(-х) = D(х) для любого х е D(f). Рассмотрим две точки графика функции: А(х; f(х)) и В(-х; f(-х)). Так как f(-х) = -f(х), то у точек А и В абсциссы являются противоположными числами и ординаты являются противоположными числами. Эти точки симметричны относительно начала координат (рис. 74).

Таким образом, для каждой точки А графика нечетной функции у = f(х) существует симметричная ей относительно начала координат точка В того же графика. Это означает, что график нечетной функции симметричен относительно начала координат.

Верны и обратные утверждения:

1) Если график функции у = f(х) симметричен относительно оси ординат, то у = f(х) — четная функция.

В самом деле, симметрия графика функции у = f(х) относительно оси у означает, что для всех х из области определения функции справедливо равенство f(-х) = f(х), т.е. у = f(х) — четная функция.

2) Если график функции у = f(х) симметричен относительно начала координат, то у = f(х) — нечетная функция.

Симметрия графика функции у = f(х) относительно начала координат означает, что для всех х из области определения функции справедливо равенство f(-х) = -f(х), т.е. у — f(х) — нечетная функция.

Исследовать на четность функцию
Решение.

Первый способ. Имеем Значит, для любого х из D(f) справедливо равенство f(-х) = f(х), т.е. функция является четной.

Второй способ. Графиком функции служит полуокружность с центром в начале координат и радиусом 3 (см. рис.52 из § 9), она симметрична относительно оси у. Это означает, что — четная функция.

А.Г. Мордкович Алгебра 9 класс

Материалы по математике онлайн, задачи и ответы по классам, планы конспектов уроков по математике скачать

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь – Образовательный форум.

Источники:

http://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/628987/

Четные и нечетные функции

http://edufuture.biz/index.php?title=%D0%A7%D0%B5%D1%82%D0%BD%D1%8B%D0%B5_%D0%B8_%D0%BD%D0%B5%D1%87%D0%B5%D1%82%D0%BD%D1%8B%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8

Ссылка на основную публикацию
Статьи на тему: