Усеченная квадратная пирамида. Пирамида

Пирамида и усеченная пирамида

Как можно построить пирамиду? На плоскости р построим какой-либо многоугольник, например пятиугольник ABCDE. Вне плоскости р возьмем точку S. Соединив точку S отрезками со всеми точками многоугольника, получим пирамиду SABCDE (рис.).

Точка S называется вершиной, а многоугольник ABCDE — основанием этой пирамиды. Таким образом, пирамида с вершиной S и основанием ABCDE — это объединение всех отрезков [SM], где М ∈ ABCDE.

Треугольники SAB, SBC, SCD, SDE, SEA называются боковыми гранями пирамиды, общие стороны боковых граней SA, SB, SC, SD, SE — боковыми ребрами.

Пирамиды называются треугольными, четырехугольными, п-угольными в зависимости от числа сторон основания. На рис. даны изображения треугольной, четырехугольной и шестиугольной пирамид.

Плоскость, проходящая через вершину пирамиды и диагональ основания, называется диагональной, а полученное сечение — диагональным. На рис. 186 одно из диагональных сечений шестиугольной пирамиды заштриховано.

Отрезок перпендикуляра, проведенного через вершину пирамиды к плоскости ее основания, называется высотой пирамиды (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Пирамида называется правильной, если основание пирамиды—правильный многоугольник и вершина пирамиды проектируется в его центр.

Все боковые грани правильной пирамиды — конгруэнтные равнобедренные треугольники. У правильной пирамиды все боковые ребра конгруэнтны.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой пирамиды. Все апофемы правильной пирамиды конгруэнтны.

Если обозначить сторону основания через а, а апофему через h, то площадь одной боковой грани пирамиды равна 1 /2 ah .

Сумма площадей всех боковых граней пирамиды называется площадью боковой поверхности пирамиды и обозначается через Sбок.

Так как боковая поверхность правильной пирамиды состоит из n конгруэнтных граней, то

где Р — периметр основания пирамиды. Следовательно,

т. е. площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Площадь полной поверхности пирамиды вычисляется по формуле

Объем пирамиды равен одной трети произведения площади ее основания Socн. на высоту Н:

Вывод этой и некоторых других формул будет дан в одной из последующих глав.

Построим теперь пирамиду другим способом. Пусть дан многогранный угол, например, пятигранный, с вершиной S (рис.).

Проведем плоскость р так, чтобы она пересекала все ребра данного многогранного угла в разных точках А, В, С, D, Е (рис.). Тогда пирамиду SABCDE можно рассматривать как пересечение многогранного угла и полупространства с границей р, в котором лежит вершина S.

Очевидно, что число всех граней пирамиды может быть произвольным, но не меньшим четырех. При пересечении трехгранного угла плоскостью получается треугольная пирамида, у которой четыре грани. Любую треугольную пирамиду иногда называют тетраэдром, что означает четырехгранник.

Усеченную пирамиду можно получить, если пирамиду пересечь плоскостью, параллельной плоскости основания.

На рис. дано изображение четырехугольной усеченной пирамиды.

Усеченные пирамиды также называются треугольными, четырехугольными, n-угольными в зависимости от числа сторон основания. Из построения усеченной пирамиды следует, что она имеет два основания: верхнее и нижнее. Основания усеченной пирамиды — два многоугольника, стороны которых попарно параллельны. Боковые грани усеченной пирамиды — трапеции.

Высотой усеченной пирамиды называется отрезок перпендикуляра, проведенного из любой точки верхнего основания к плоскости нижнего.

Читать еще:  Девчачьи игры на андроид. Игры для девочек на андроид

Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и плоскостью сечения, параллельной основанию. Высота боковой грани правильной усеченной пирамиды (трапеции) называется апофемой.

Можно доказать, что у правильной усеченной пирамиды боковые ребра конгруэнтны, все боковые грани конгруэнтны, все апофемы конгруэнтны.

Если в правильной усеченной n-угольной пирамиде через а и bn обозначить длины сторон верхнего и нижнего оснований, а через h — длину апофемы, то площадь каждой боковой грани пирамиды равна

Сумма площадей всех боковых граней пирамиды называется площадью ее боковой поверхности и обозначается Sбок. . Очевидно, что для правильной усеченной n-угольной пирамиды

Так как па = Р и nbn = Р1 — периметры оснований усеченной пирамиды, то

т. е. площадь боковой поверхности правильной усеченной пирамиды равна половине произведения суммы периметров ее оснований на апофему.

Сечение, параллельное основанию пирамиды

1) боковые ребра и высота разделятся на пропорциональные части;

2) в сечении получится многоугольник, подобный основанию;

3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Теорему достаточно доказать для треугольной пирамиды.

Так как параллельные плоскости пересекаются третьей плоскостью по параллельным прямым, то (АВ) || (А1В1), (BС) ||( В1C1), (AС) || (A1С1) (рис.).

Параллельные прямые рассекают стороны угла на пропорциональные части, и поэтому

Соответственные углы треугольников ABC и A1B1C1 конгруэнтны, как углы с параллельными и одинаково направленными сторонами. Поэтому

Площади подобных треугольников относятся, как квадраты соответствующих сторон:

Теорема. Если две пирамиды с равными высотами рассечены на одинаковом расстоянии от вершины плоскостями, параллельными основаниям, то площади сечений пропорциональны площадям оснований.

Пусть (черт. 84) В и В1— площади оснований двух пирамид, H — высота каждой из них, b и b1 — площади сечений плоскостями, параллельными основаниям и удалёнными от вершин на одно и то же расстояние h.

Согласно предыдущей теореме мы будем иметь:

Следствие. Если В = В1, то и b = b1 , т. е. если у двух пирамид с равными высотами основания равновелики, то равновелики и сечения, равноотстоящие от вершины.

Пирамида. Правильная и усечённая пирамиды

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Данный урок поможет получить представление о теме «Пирамида. Правильная и усеченная пирамида». На этом занятии мы познакомимся с понятием правильной пирамиды, дадим ей определение. Затем докажем теорему о боковой поверхности правильной пирамиды и теорему о боковой поверхности правильной усеченной пирамиды.

Тема: Пирамида

Урок: Правильная и усечённая пирамиды

Правильная треугольная пирамида

Определение: правильной n-угольной пирамидой называется такая пирамида, у которой в основании лежит правильный n-угольник, и высота проецируется в центр этого n-угольника (рис. 1).

Правильная треугольная пирамида

Для начала рассмотрим ∆ABC (рис. 2), в котором AB=BC=CA (то есть в основании пирамиды лежит правильный треугольник). У правильного треугольника центр вписанной и описанной окружности совпадают и являются центром самого треугольника. В данном случае центр находится следующим образом: находим середину АВ – С1, проводим отрезок СС1, который является медианой, биссектрисой и высотой; аналогично находим середину AC – B1 и проводим отрезок BB1. Пересечением BB1 и СС1 будет точка О, которая является центром ∆АВС.

Читать еще:  Грамматика любви. Иван бунин - грамматика любви

Если соединить центр треугольника O с вершиной пирамиды S, то получим высоту пирамиды SO ⊥ ABC, SO = h.

Соединив точку S с точками А, В и С получим боковые ребра пирамиды.

Мы получили правильную треугольную пирамиду SABC (рис. 2).

Стандартные задания на пирамиды (Sосн,Sбок ,ha)

Известны стороны основания – а и высота пирамиды – h. Необходимо найти:

Решение:

1. Найти Sосн

Если есть ∆АВС (рис. 3), сторона которого равна а, то

2. Найти Sбок ,hа

Отрезок SC1 называется апофемой ha(рис. 2). Апофему найдем из прямоугольного треугольника SC1O. Известен катет SO=h, второй катет С1О найдем из ∆АВС (рис. 3).

Для начала найдем высоту АА1 из прямоугольного треугольника АА1С:

Высота АА1 состоит из радиуса вписанной окружности r=С1О и из радиуса описанной окружности R (причем R=2r).

Зная катеты ∆SC1O, мы можем найти гипотенузу

Найдя апофему haможно без труда найти

Стандартные задания на пирамиды (двугранные углы)

Теорема о боковой поверхности правильной пирамиды

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему

3. Найти (АВ)

Двугранный угол при ребре АВ есть угол между плоскостями SAB и ABC. Обозначим его

Избавимся от иррациональности в знаменателе путем умножения и деления выражения на

Зная тангенс угла, можем найти сам угол

5)4. Найти( (SC)

Проведем BP⊥SC и AP⊥SC ,SC, тогда ∠(SC)= ∠APB. Обозначим его как ∠α (рис. 4)

Для нахождения угла рассмотрим равнобедренный треугольник АРВ. Основание треугольника АВ=а, а боковые стороны найдем из ∆ACS (который тоже является равнобедреннымтреугольником) в).

B ∆SAC S известны основание АС = а и боковые стороны . Необходимо найти высоту ,высоту, проведенную из точки А. Для этого нужно найти площадь треугольника:

Из данного уравнения найдем АР:

По теореме косинусов

Косинус угла однозначно определяет угол в треугольнике, поэтому дальше задача очевидная.

Усеченная правильная пирамида

Усеченная правильная пирамида

Любая усеченная пирамида является многогранником, образованным пирамидой и её сечением, параллельным основанию.

Теорема о боковой поверхности правильной усеченной пирамиды

Площадь боковой поверхности правильной усечённой пирамиды равна произведению полу суммы периметров на апофему.

Площадь одной боковой грани усеченной пирамиды есть площадь трапеции (рис. 5)

А площадь всей боковой поверхности

Выводы:

Мы рассмотрели правильную пирамиду и стандартные задачи на нее, включая двугранные углы. А также усеченную правильную пирамиду.

Список литературы

  1. И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е изд., испр. и доп. – М.: Мнемозина, 2008. – 288 с.: ил.
  2. Шарыгин И. Ф. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. – М.: Дрофа, 1999. – 208 с.: ил.
  3. Е. В. Потоскуев, Л. И. Звалич. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. – 6-е изд., стереотип. – М.: Дрофа, 2008. – 233 с.: ил.
Читать еще:  Пророк моисей создание библии. Чудесное спасение младенца

Домашнее задание

  1. Какое наименьшее число ребер может иметь пирамида?
  2. Сколько ребер у n-угольной усеченной пирамиды?
  3. На Рис. 4 мы провели перпендикуляр СР к ребру SC и соединили точку В и Р. Докажите, что ВР⊥SC.
  4. В правильной четырехугольной пирамиде SABCD (точка O – центр основания, S – вершина) боковое ребро SB=13, а диагональ основания AC =24. Найдите длину отрезка SO.
  5. В правильной треугольной пирамиде SABC точка L – середина ребра AC, S – вер­шина. Известно, что BC = 6, а SL = 5. Найдите площадь боковой поверхности пи­рамиды.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Я Класс (Источник).
  2. Фестиваль педагогических идей «Открытый урок» (Источник).
  3. Интернет-портал Slideshare.net (Источник).

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Пирамида

Пирамида – многогранник, основание которого — многоугольник , а остальные грани — треугольники, имеющие общую вершину.

По числу углов основания различают пирамиды треугольные , четырёхугольные и т. д.

Вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания.

Основание — многоугольник, которому не принадлежит вершина пирамиды.

Апофема — высота боковой грани правильной пирамиды, проведенная из ее вершины.

Высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания.

Некоторые свойства пирамиды

1) Если все боковые ребра равны, то

около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр

боковые ребра образуют с плоскостью основания равные углы

Верно и обратное.

Если боковые ребра образуют с плоскостью основания равные углы, то все боковые ребра пирамиды равны.

Если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

2) Если все грани пирамиды наклонены к плоскости основания под одним углом , то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр

Верно и обратное.

Виды пирамид

Пирамида называется правильной , если основанием её является правильный многоугольник, а вершина проецируется в центр основания.

Для правильной пирамиды справедливо:

– боковые ребра правильной пирамиды равны;

– в правильной пирамиде все боковые грани — равные равнобедренные треугольники;

– в любую правильную пирамиду можно вписать сферу;

– около любой правильной пирамиды можно описать сферу;

– площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.


Пирамида называется прямоугольной , если одно из боковых рёбер пирамиды перпендикулярно основанию. Тогда это ребро и есть высота пирамиды.

Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.

Тетраэдр – треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды.

Источники:

http://razdupli.ru/teor/35_piramida-i-usechennaya-piramida.php

http://interneturok.ru/lesson/geometry/10-klass/mnogogranniki/piramida-pravilnaya-i-usechyonnaya-piramidy

http://egemaximum.ru/piramida/

Ссылка на основную публикацию
Статьи на тему: