Передача и распределение электрической энергии.

Передача и распределение электрической энергии

Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям. Электросетевое хозяйство — естественно-монопольный сектор электроэнергетики: потребитель может выбирать, у кого покупать электроэнергию (то есть энергосбытовую компанию), энергосбытовая компания может выбирать среди оптовых поставщиков (производителей электроэнергии), однако сеть, по которой поставляется электроэнергия, как правило, одна, и потребитель технически не может выбирать электросетевую компанию. С технической точки зрения, электрическая сеть представляет собой совокупность линий электропередачи (ЛЭП) и трансформаторов, находящихся на подстанциях.

· Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. В настоящее время практически повсеместно используется переменный ток. Электроснабжение в подавляющем большинстве случаев — трёхфазное, поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные.

· Воздушные линии (ВЛ) подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Как правило, провод на воздушной линии не имеет поверхностной изоляции; изоляция имеется в местах крепления к опорам. На воздушных линиях имеются системы грозозащиты. Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными кабельными линиями): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный контроль состояния линии. Однако, у воздушных ЛЭП имеется ряд недостатков:

· широкая полоса отчуждения: в окрестности ЛЭП запрещено ставить какие-либо сооружения и сажать деревья; при прохождении линии через лес, деревья по всей ширине полосы отчуждения вырубаются;

· незащищённость от внешнего воздействия, например, падения деревьев на линию и воровства проводов; несмотря на устройства грозозащиты, воздушные линии также страдают от ударов молнии. По причине уязвимости, на одной воздушной линии часто оборудуют две цепи: основную и резервную;

· эстетическая непривлекательность; это одна из причин практически повсеместного перехода на кабельный способ электропередачи в городской черте.

· Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз). Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом. Бывают коллекторные и бесколлекторные кабельные линии. В первом случае кабель прокладывается в подземных бетонных каналах — коллекторах. Через определённые промежутки на линии оборудуются выходы на поверхность в виде люков — для удобства проникновения ремонтных бригад в коллектор. Бесколлекторные кабельные линии прокладываются непосредственно в грунте. Бесколлекторные линии существенно дешевле коллекторных при строительстве, однако их эксплуатация более затратна в связи с недоступностью кабеля. Главным достоинством кабельных линий электропередачи (по сравнению с воздушными) является отсутствие широкой полосы отчуждения. При условии достаточно глубокого заложения, различные сооружения (в том числе жилые) могут строиться непосредственно над коллекторной линией. В случае бесколлекторного заложения строительство возможно в непосредственной близости от линии. Кабельные линии не портят своим видом городской пейзаж, они гораздо лучше воздушных защищены от внешнего воздействия. К недостаткам кабельных линий электропередачи можно отнести высокую стоимость строительства и последующей эксплуатации: даже в случае бесколлекторной укладки сметная стоимость погонного метра кабельной линии в разы выше, чем стоимость воздушной линии того же класса напряжения. Кабельные линии менее доступны для визуального наблюдения их состояния (а в случае бесколлекторной укладки — вообще недоступны), что также является существенным эксплуатационным недостатком.

Читать еще:  Значение имени ирина. Имя Ирина: значение, черты характера, совместимость

Передача и распределение электрической энергии

Электроэнергетической системой называется электрическая часть энергосистемы и питающиеся от нее приемники электрической энергии, объединенные общностью процесса производства, передачи, распределения и потребления электрической энергии.

В настоящее время в составе 6 объединенных энергосистем работает параллельно 74 районных систем.

Электроэнергетической сетью называется совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.

Подстанцией называется электроустановка, служащая для преобразования и распределения электроэнергии и состоящая из трансформаторов или других преобразователей энергии, распределительных устройств до и выше 1000 В, аккумуляторной батареи устройств управления и вспомогательных сооружений.

Распределительным устройством называется электроустановка, служащая для приема и распределения электроэнергии и содержащая коммутационные аппараты, сборные и соединительные шины, вспомогательные устройства (компрессорные, аккумуляторные и др.), а также устройства защиты, автоматики и измерительные приборы.

Линией электропередачи (ЛЭП) любого напряжения (воздушной или кабельной) называется электроустановка, предназначенная для передачи электрической энергии на одном и том же напряжении без трансформации.

Рис. 1. Передача и распределение электрической энергии

По ряду признаков электрические сети подразделяются на большое количество разновидностей, для которых применяются различные методы расчета, монтажа и эксплуатации.

Электрические сети делятся:

1. По напряжению:

2. По уровню номинального напряжения:

а) сети низкого (напряжения (до 1 кВ);

б) сети среднего напряжения (выше 1 кВ и до 35 кВ включительно);

в) сети высокого напряжения (110 . 220 кВ);

г) сети сверхвысокого напряжения (330 . 750 кВ);

д) сети ультравысокого напряжения (выше 1000 кВ)

3. По степени подвижности:

а) передвижные (допускают многократное изменение трассы, свертывание и развертывание) – сети до 1 кВ;

б) стационарные сети (имеют неизменяемую трассу и конструкцию):

временные – для питания объектов, работающих непродолжительно (несколько лет);

постоянные – большинство электрических сетей, работающих в течение десятилетий.

4. По назначению:

а) сети до 1 кВ: осветительные; силовые; смешанные; специальные (сети управления и сигнализации).

б) сети выше 1 кВ: местные, обслуживающие небольшие районы, радиусом действия 15. 30 км, напряжением до 35 кВ включительно; районные, охватывающие большие районы и связывающие электростанции электрической системы между собой и с центрами нагрузок, напряжением 110 кВ и выше.

5. По роду тока и числу проводов:

а) линии постоянного тока: однопроводные, двухпроводные, трехпроводные (+, -, 0);

б) линии переменного тока: однофазные (одно- и двухпроводные), трехфазные (трех- и четырехпроводные), неполнофазные (две фазы и нуль).

6. По режиму работы нейтрали: с эффективно заземленной нейтралью (сети выше 1 кВ), с глухозаземленной нейтралью (сети до и выше 1 кВ), с изолированной нейтралью (сети до и выше 1 кВ).

Читать еще:  Гта 5 самая сложная трасса на велосипедах.

7. По схеме электрических соединений:

а) разомкнутые (нерезервированные):

Рис. 2 . Схемы разомкнутых сетей : а) радиальные (нагрузка только на конце линии); б) магистральные (нагрузка присоединена к линии в разных местах). б) замкнутые (резервированные).

Рис. 3 . Схемы замкнутых сетей : а) сеть с двухсторонним питанием; б) кольцевая сеть; в) двойная магистральная линия; г) сложнозамкнутая сеть (для питания ответственных потребителей по двум и более направлениям).

8. По конструкции: электропроводки (силовые и осветительные ), токопроводы – для передачи электроэнергии в больших количествах на небольшие расстояния, воздушные линии – для передачи электроэнергии на большие расстояния, кабельные линии – для передачи электроэнергии на далекие расстояния в случаях, когда сооружение ВЛ невозможно.

К электрическим сетям предъявляются следующие требования : надежность, живучесть и экономичность.

Надежность – основное техническое требование, под которым понимается свойство сети выполнять свое назначение в пределах заданного времени и условий работы, обеспечивая электроприемники электроэнергией в необходимом количестве и надлежащего качества.

Необходимое количество электроэнергии определяется мощностью и режимом работы электроприемников. Качество электроэнергии зависит от параметров сети и определяется ГОСТ 13109-97, в которых приведены допустимые отклонения напряжения на зажимах электроприемников: электродвигатели -5% . +10%; лампы рабочего освещения промышленных предприятий и общественных зданий, прожекторы наружногоюсвещения -2,5%. +5%; лампы освещения жилых зданий, аварийного и наружного освещения, прочие электроприемники ±5%.

Надежность обеспечивается:

1. применением схемы сети, учитывающей ответственность электроприемников;

2. выбором соответствующих марок проводов и кабелей;

3. тщательным расчетом сечений проводов и кабелей по нагреву, допустимой потере напряжения и механической прочности и расчетом устройств регулирования напряжения;

4. соблюдением технологии электромонтажных работ;

5. своевременным и качественным выполнением правил технической эксплуатации.

Живучесть электрической сети – это свойство выполнять свое назначение в условиях разрушающих воздействий в том числе и в боевой обстановке при воздействиях средств поражения противника.

1. использованием конструкций, которые наименее подвержены разрушению при воздействии поражающих факторов оружия противника;

2. специальной защитой сети от поражающих факторов;

3. четкой организацией ремонтно-восстановительных работ. Живучесть – основное тактическое требование.

Экономичность — это минимум затрат на сооружение и эксплуатацию сети при условии выполнения требований надежности и живучести.

1. применением типовых серийно выпускаемых и стандартных конструкций;

2. унификацией материалов и оборудования;

3. применением недефицитньгх и недорогих материалов;

4. возможностью дальнейшего развития, расширения и усовершенствования в процессе эксплуатации.

ИНФОФИЗ – мой мир.

Весь мир в твоих руках – все будет так, как ты захочешь

Весь мир в твоих руках – все будет так, как ты захочешь

Как сказал.

Тестирование

Урок 44. Получение, передача и распределение электроэнергии.

Производство, передача и распределение электроэнергии.

Проблема обеспечения энергией уже в самое ближайшее время станет одной из наиболее острых среди глобальных проблем человечества. Более 60% энергии вырабатывается на тепловых электростанциях (ТЭС) на органическом топливе (уголь, нефтепродукты, газ, торф), примерно 18% – на атомных (АЭС) и гидроэлектростанциях (ГЭС), а остальные 2% – на солнечных, ветровых, геотермальных и прочих электростанциях.

Читать еще:  Сон стирать белье. Приснилось стирать белье - толкование сна по сонникам

Производство электрической энергии в России концентрируется преимущественно на крупных электростанциях. Потребители электрической энергии – промышленность, строительство, электрифицированный транспорт, сельское хозяйство, сфера бытового обслуживания расположены в городах и сельской местности. Центры потребления электроэнергии, как правило, удалены от ее источников зачастую на расстояния в сотни и даже тысячи километров и распределены на значительной территории. В связи с этим возникает задача транспортирования электроэнергии от станций к потребителям. Эту задачу выполняют электрические сети, состоящие из линий электропередачи (ЛЭП) и подстанций.

Передача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой.

Для уменьшения потерь на нагревания проводов необходимо уменьшить силу тока в линии передачи (ЛЭП), и, следовательно, увеличить напряжение. Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется трехфазный ток переменной частоты 50 Гц. На рисунке представлена схема линии передачи электроэнергии от электростанции до потребителя. Схема дает представление об использовании трансформаторов при передаче электроэнергии.

Следует отметить, что при повышении напряжения в линиях передачи увеличиваются утечки энергии через воздух. В сырую погоду вблизи проводов линии может возникнуть так называемый коронный разряд, который можно обнаружить по характерному потрескиванию. Коэффициент полезного действия линии передач не превышает 90 %.

Условная схема высоковольтной линии передачи. Трансформаторы изменяют напряжение в нескольких точках линии. На схеме изображен только один из трех проводов высоковольтной линии.

Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы.

Трансформатор – прибор для преобразования напряжения и силы переменного тока при неизменной частоте.

Он был изобретен П. Н. Яблочковым в 1876 году. В 1882 году трансформатор был усовершенствован И. Ф. Усагиным.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции.

Простейший трансформатор состоит из сердечника замкнутой формы из магнитомягкого материала, на который намотаны две обмотки: первичная и вторичная.

Первичная обмотка подсоединяется к источнику переменного тока с ЭДС e1(t), поэтому в ней возникает ток J1(t), создающий в сердечнике трансформатора переменный магнитный поток Φ, который практически без рассеяния циркулирует по замкнутому магнитному сердечнику и, следовательно, пронизывает все витки первичной и вторичной обмоток.

В режиме холостого хода, то есть при разомкнутой цепи вторичной обмотки, ток в первичной обмотке весьма мал из-за большого индуктивного сопротивления обмотки. В этом режиме трансформатор потребляет небольшую мощность.

В режиме нагрузки в цепь вторичной обмотки включается сопротивление нагрузки Rн, и в ней возникает переменный ток J2(t). Теперь полный магнитный поток Φ в сердечнике создается обоими токами. Но согласно правилу Ленца магнитный поток Φ2, создаваемый индуцированным во вторичной обмотке током J2, направлен навстречу потоку Φ1, создаваемому током J1 в первичной обмотке: Φ = Φ1 – Φ2. Отсюда следует, что токи J1 и J2 изменяются в противофазе, то есть имеют фазовый сдвиг, равный 180°.

При k>1 трансформатор называется повышающим, при k Подробности Просмотров: 22298

Источники:

http://studopedia.ru/10_165163_generatsiya-elektricheskoy-energii.html

http://electricalschool.info/main/drugoe/623-peredacha-i-raspredelenie.html

http://infofiz.ru/index.php/mirfiziki/lkf/97-lk52t

Ссылка на основную публикацию
Статьи на тему: