Как извлечь корень квадратный. Математика, которая мне нравится
В предисловии к своему первому изданию “В царстве смекалки” (1908 год) Е. И. Игнатьев пишет: “. умственную самодеятельность, сообразительность и “смекалку” нельзя ни “вдолбить”, ни “вложить” ни в чью голову. Результаты надёжны лишь тогда, когда введение в область математических знаний совершается в лёгкой и приятной форме, на предметах и примерах обыденной и повседневной обстановки, подобранных с надлежащим остроумием и занимательностью”.
В предисловии к изданию 1911 г “Роль памяти в математике” Е.И. Игнатьев пишет “… в математике следует помнить не формулы, а процесс мышления”.
Для извлечения квадратного корня существуют таблицы квадратов для двухзначных чисел, можно разложить число на простые множители и извлечь квадратный корень из произведения. Таблицы квадратов бывает недостаточно, извлечение корня разложением на множители – трудоёмкая задача, которая тоже не всегда приводит к желаемому результату. Попробуйте извлечь квадратный корень из числа 209764? Разложение на простые множители дает произведение 2*2*52441. Методом проб и ошибок, подбором – это, конечно, можно сделать, если быть уверенным в том, что это целое число. Способ, который я хочу предложить, позволяет извлечь квадратный корень в любом случае.
Когда-то в институте (Пермский государственный педагогический институт) нас познакомили с этим способом, о котором сейчас хочу рассказать. Никогда не задумывалась, есть ли у этого способа доказательство, поэтому сейчас пришлось некоторые доказательства выводить самой.
Основой этого способа, является состав числа =.
1. Разбиваем число (5963364) на пары справа налево (5`96`33`64)
2. Извлекаем квадратный корень из первой слева группы ( – число 2). Так мы получаем первую цифру числа &.
3. Находим квадрат первой цифры (2 2 =4).
4. Находим разность первой группы и квадрата первой цифры (5-4=1).
5.Сносим следующие две цифры (получили число 196).
6. Удваиваем первую, найденную нами цифру, записываем слева за чертой (2*2=4).
7.Теперь необходимо найти вторую цифру числа &: удвоенная первая цифра, найденная нами, становится цифрой десятков числа, при умножении которого на число единиц, необходимо получить число меньшее 196 (это цифра 4, 44*4=176). 4 – вторая цифра числа &.
8. Находим разность (196-176=20).
9. Сносим следующую группу (получаем число 2033).
10. Удваиваем число 24, получаем 48.
11.48 десятков в числе, при умножении которого на число единиц, мы должны получить число меньшее 2033 (484*4=1936). Найденная нами цифра единиц (4) и есть третья цифра числа &.
Доказательство приведено мной для случаев:
1. Извлечение квадратного корня из трехзначного числа;
2. Извлечение квадратного корня из четырехзначного числа.
Приближенные методы извлечения квадратного корня (без использования калькулятора) .
1.Древние вавилоняне пользовались следующим способом нахождения приближенного значения квадратного корня их числа х. Число х они представляли в виде суммы а 2 +b, где а 2 ближайший к числу х точный квадрат натурального числа а (а 2 ?х), и пользовались формулой . (1)
Извлечем с помощью формулы (1) корень квадратный, например из числа 28:
Результат извлечения корня из 28 с помощью МК 5,2915026.
Как видим способ вавилонян дает хорошее приближение к точному значению корня.
2. Исаак Ньютон разработал метод извлечения квадратного корня, который восходил еще к Герону Александрийскому (около 100 г. н.э.). Метод этот (известный как метод Ньютона) заключается в следующем.
Пусть а 1 – первое приближение числа (в качестве а 1 можно брать значения квадратного корня из натурального числа – точного квадрата, не превосходящего х) .
Следующее, более точное приближение а 2 числа найдется по формуле .
Ученики всегда спрашивают: «Почему нельзя пользоваться калькулятором на экзамене по математике? Как извлечь корень квадратный из числа без калькулятора?» Попробуем ответить на этот вопрос.
Как же извлечь корень квадратный из числа без помощи калькулятора?
Действие извлечения корня квадратного обратно действию возведения в квадрат.
Если из положительного числа извлечь корень квадратный и результат возвести в квадрат, получим то же число.
Из небольших чисел, являющихся точными квадратами натуральных чисел, например 1, 4, 9, 16, 25, …,100 квадратные корни можно извлечь устно. Обычно в школе учат таблицу квадратов натуральных чисел до двадцати. Зная эту таблицу легко извлечь корни квадратные из чисел 121,144, 169, 196, 225, 256, 289, 324, 361, 400. Из чисел больших 400 можно извлекать методом подбора используя, некоторые подсказки. Давайте попробуем на примере рассмотреть этот метод.
Пример: Извлечь корень из числа 676 .
Замечаем, что 20 2 = 400, а 30 2 = 900, значит 20
Как извлечь квадратный корень вручную. Математика, которая мне нравится
Ученики всегда спрашивают: «Почему нельзя пользоваться калькулятором на экзамене по математике? Как извлечь корень квадратный из числа без калькулятора?» Попробуем ответить на этот вопрос.
Как же извлечь корень квадратный из числа без помощи калькулятора?
Действие извлечения корня квадратного обратно действию возведения в квадрат.
Если из положительного числа извлечь корень квадратный и результат возвести в квадрат, получим то же число.
Из небольших чисел, являющихся точными квадратами натуральных чисел, например 1, 4, 9, 16, 25, …,100 квадратные корни можно извлечь устно. Обычно в школе учат таблицу квадратов натуральных чисел до двадцати. Зная эту таблицу легко извлечь корни квадратные из чисел 121,144, 169, 196, 225, 256, 289, 324, 361, 400. Из чисел больших 400 можно извлекать методом подбора используя, некоторые подсказки. Давайте попробуем на примере рассмотреть этот метод.
Пример: Извлечь корень из числа 676 .
Замечаем, что 20 2 = 400, а 30 2 = 900, значит 20 5 , значит, старшим разрядом будет разряд единиц. Значение этого разряда, а также более младших, будет найдено на следующих шагах алгоритма извлечения корня.
Все следующие шаги алгоритма имеют целью последовательное уточнение значения корня за счет того, что находятся значения следующих разрядов искомого значения корня, начиная со старшего и продвигаясь к младшим. К примеру, значение корня на первом шаге получается 2 , на втором – 2,2 , на третьем – 2,23 , и так далее 2,236067977… . Опишем, как происходит нахождение значений разрядов.
Нахождение разрядов проводится за счет перебора их возможных значений 0, 1, 2, …, 9 . При этом параллельно вычисляются n -ые степени соответствующих чисел, и они сравниваются с подкоренным числом. Если на каком-то этапе значение степени превзойдет подкоренное число, то значение разряда, соответствующее предыдущему значению, считается найденным, и производится переход к следующему шагу алгоритма извлечения корня, если же этого не происходит, то значение этого разряда равно 9 .
Поясним эти моменты все на том же примере извлечения квадратного корня из пяти.
Сначала находим значение разряда единиц. Будем перебирать значения 0, 1, 2, …, 9 , вычисляя соответственно 0 2 , 1 2 , …, 9 2 до того момента, пока не получим значение, большее подкоренного числа 5 . Все эти вычисления удобно представлять в виде таблицы:
Так значение разряда единиц равно 2 (так как 2 2 5 ). Переходим к нахождению значения разряда десятых. При этом будем возводить в квадрат числа 2,0, 2,1, 2,2, …, 2,9 , сравнивая полученные значения с подкоренным числом 5 :
Так как 2,2 2 5 , то значение разряда десятых равно 2 . Можно переходить к нахождению значения разряда сотых:
Так найдено следующее значение корня из пяти, оно равно 2,23 . И так можно продолжать дальше находить значения : 2,236, 2,2360, 2,23606, 2,236067, … .
Для закрепления материала разберем извлечение корня с точностью до сотых при помощи рассмотренного алгоритма.
Сначала определяем старший разряд. Для этого возводим в куб числа 0, 10, 100 и т.д. пока не получим число, превосходящее 2 151,186 . Имеем 0 3 =0 2 151,186 , таким образом, старшим разрядом является разряд десятков.
Определим его значение.
Так как 10 3 2 151,186 , то значение разряда десятков равно 1 . Переходим к единицам.
Таким образом, значение разряда единиц равно 2 . Переходим к десятым.
Так как даже 12,9 3 меньше подкоренного числа 2 151,186 , то значение разряда десятых равно 9 . Осталось выполнить последний шаг алгоритма, он нам даст значение корня с требуемой точностью.
На этом этапе найдено значение корня с точностью до сотых: .
В заключение этой статьи хочется сказать, что существует масса других способов извлечения корней. Но для большинства задач достаточно тех, которые мы изучили выше.
- Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
- Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 – 11 классов общеобразовательных учреждений.
- Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).
Вычисление (или извлечение) квадратного корня можно производить несколькими способами, но все они не сказать что уж очень просты. Проще, конечно, прибегнуть к помощи калькулятора. Но если такой возможности нет (или вы хотите понять суть квадратного корня), могу посоветовать пойти следующим путем, его алгоритм таков:
Если на такие длительные вычисления у вас нет сил, желания или терпения, можно прибегнуть к помощи грубого подбора, его плюс в том, что он невероятно быстрый и при должной смекалке точный. Пример:
Когда я учился в школе (в начале 60-х годов), нас учили извлекать квадратный корень из любого числа. Методика несложная, внешне похожа на quot;деление столбикомquot;, но излагать е здесь, это потребуется полчаса времени и 4-5 тысяч знаков текста. Но зачем это Вам? У вас есть телефон или иной гаджет, в нм есть калькулятор. Калькулятор есть и в любом компьютере. Лично я предпочитаю производить такого рода вычисления в Excel.
Зачастую в школе требуется находить квадратные корни разных чисел. Но если вот мы привыкли пользоваться постоянно для этого калькулятором, то на экзаменах такой возможности не будет, поэтому нужно учиться искать корень без помощи калькулятора. А сделать-то это в принципе возможно.
Смотрите сначала на последнюю цифру вашего числа:
Теперь требуется определить примерно значение для корня из самой левой группы
В случае когда число имеет больше двух групп, то находить корень надо так:
А вот следующая циферка должна быть именно наибольшей, подобрать е надо так:
Теперь надо образовать новое число А посредством добавления к остатку, который был получен выше, следующую группу.
В наших примерах:
Столбиком наджней, а когда нужно больше пятнадцати знаков, то компьютеры и телефоны с калькуляторами чаще всего отдыхают. Осталось проверить, займт ли описание методики 4-5 тыс. знаков.
Берм любое число, от запятой отсчитываем пары цифр вправо и влево
Пара цифр – это как бы двузначное число. Корень из двузначного – однозначное. Подбираем однозначное, квадрат которого меньше первой пары цифр. В нашем случае это 3.
Как при делении столбиком, под первой парой выписываем этот квадрат и из первой пары вычитаем. Результат сносим под подчерк. 12 – 9 = 3. Добавляем к этой разнице вторую пару цифр (будет 334). Слева от числа берм удвоенное значение той части результата, которую уже нашли о дополняем цифрой (у нас 2*6=6), такой, чтобы при умножении на не полученное число не превосходило число со второй парой цифр. Получаем, что найденная цифра – пятрка. Снова находим разность (9), сносим следующую пару цифр получая 956, снова выписываем удвоенную часть результата (70), снова е дополняем нужной цифрой и так далее до упора. Или до нужной точности вычислений.
Во-первых для того что бы вычислить квадратный корень надо хорошо знать таблицу умножения. Самые простые примеры – это 25 (5 на 5 = 25) и так далее. Если же брать числа посложнее, то можно использовать данную таблицу, где по горизонтали единицы, а по вертикале десятки.
Есть хороший способ как найти корень из числа без помощи калькуляторов. Для этого вам понадобится линейка и циркуль. Суть в том, что вы находите на линейке значение, которое у вас под корнем. Например, ставите отметку возле 9. Ваша задача – поделить это число на равное количество отрезков, то есть на два линии по 4,5 см, а на ровный отрезок. Несложно догадаться, что в итоге получится 3 отрезка по 3 сантиметра.
Способ нелегкий и для больших чисел не подойдет, но зато считается без калькулятора.
без помощи калькулятора способу извлечения корня квадратного учили в советские времена в школе в 8-м классе.
Для этого надо разбить многозначное число справа налево на грани по 2 цифры :
Первая цифра корня это целый корень из левой грани, в данном случае, 5.
Вычитаем 5 в квадрате из 31, 31-25=6 и к шестерке приписываем следующую грань, имеем 678.
Следующая цифра х подбирается к удвоенной пятерке так, чтобы
10х*х было максимально большим, но меньшим чем 678.
х=6, поскольку 106*6 = 636,
теперь вычисляем 678 – 636 = 42 и добавляем следующую грань 92, имеем 4292.
Снова ищем максимальный х, такой что 112х*х lt; 4292.
Ответ: корень равен 563
Так можно продолжать сколько требуется.
В некоторых случаях можно попытаться разложить подкоренное число на два или несколько квадратных множителей.
Также полезно запомнить таблицу (или хотя бы какую-то ее часть) – квадраты натуральных чисел от 10 до 99.
Предлагаю изобретенный мною вариант извлечения квадратного корня в столбик. Он отличается от общеизвестного, исключением подбора чисел. Но как выяснил позже, данный метод уже существовал за много лет до моего рождения. Описал его в своей книге Всеобщая арифметика или книга об арифметических синтезе и анализе великий Исаак Ньютон. Так что здесь излагаю свое видение и обоснование алгоритма метода по Ньютону. Запоминать алгоритм не стоит. Можно просто при необходимости пользоваться схемой на рисунке в качестве наглядного пособия.
С помощью таблиц можно не вычислить, а найти, корни квадратные толь из чисел которые есть в таблицах. Проще всего вычислять корни не только квадратные, но и других степеней, методом последовательных приближений. Например вычислим корень квадратный из 10739, заменяем три последние цифры нулями и извлечем корень из 10000 получим 100 с недостатком, поэтому берем число 102 возводим его в квадрат, получаем 10404, что тоже меньше заданного, берем 103*103=10609 опять с недостатком, берем 103,5*103,5=10712,25, берем ещ больше 103,6*103,6=10732, берем 103,7*103,7=10753,69, что уже с избытком. Можно принять корень из 10739 примерно равны 103,6. Более точно 10739=103,629. . . Аналогично вычисляем корень кубический сначала из 10000 получаем примерно 25*25*25=15625, что с избытком, берем 22*22*22=10,648, берем чуть больше 22,06*22,06*22,06=10735, что очень близко к заданному.
Как искать корень из числа. Математика, которая мне нравится
В предисловии к своему первому изданию “В царстве смекалки” (1908 год) Е. И. Игнатьев пишет: “. умственную самодеятельность, сообразительность и “смекалку” нельзя ни “вдолбить”, ни “вложить” ни в чью голову. Результаты надёжны лишь тогда, когда введение в область математических знаний совершается в лёгкой и приятной форме, на предметах и примерах обыденной и повседневной обстановки, подобранных с надлежащим остроумием и занимательностью”.
В предисловии к изданию 1911 г “Роль памяти в математике” Е.И. Игнатьев пишет “… в математике следует помнить не формулы, а процесс мышления”.
Для извлечения квадратного корня существуют таблицы квадратов для двухзначных чисел, можно разложить число на простые множители и извлечь квадратный корень из произведения. Таблицы квадратов бывает недостаточно, извлечение корня разложением на множители – трудоёмкая задача, которая тоже не всегда приводит к желаемому результату. Попробуйте извлечь квадратный корень из числа 209764? Разложение на простые множители дает произведение 2*2*52441. Методом проб и ошибок, подбором – это, конечно, можно сделать, если быть уверенным в том, что это целое число. Способ, который я хочу предложить, позволяет извлечь квадратный корень в любом случае.
Когда-то в институте (Пермский государственный педагогический институт) нас познакомили с этим способом, о котором сейчас хочу рассказать. Никогда не задумывалась, есть ли у этого способа доказательство, поэтому сейчас пришлось некоторые доказательства выводить самой.
Основой этого способа, является состав числа =.
1. Разбиваем число (5963364) на пары справа налево (5`96`33`64)
2. Извлекаем квадратный корень из первой слева группы ( – число 2). Так мы получаем первую цифру числа &.
3. Находим квадрат первой цифры (2 2 =4).
4. Находим разность первой группы и квадрата первой цифры (5-4=1).
5.Сносим следующие две цифры (получили число 196).
6. Удваиваем первую, найденную нами цифру, записываем слева за чертой (2*2=4).
7.Теперь необходимо найти вторую цифру числа &: удвоенная первая цифра, найденная нами, становится цифрой десятков числа, при умножении которого на число единиц, необходимо получить число меньшее 196 (это цифра 4, 44*4=176). 4 – вторая цифра числа &.
8. Находим разность (196-176=20).
9. Сносим следующую группу (получаем число 2033).
10. Удваиваем число 24, получаем 48.
11.48 десятков в числе, при умножении которого на число единиц, мы должны получить число меньшее 2033 (484*4=1936). Найденная нами цифра единиц (4) и есть третья цифра числа &.
Доказательство приведено мной для случаев:
1. Извлечение квадратного корня из трехзначного числа;
2. Извлечение квадратного корня из четырехзначного числа.
Приближенные методы извлечения квадратного корня (без использования калькулятора) .
1.Древние вавилоняне пользовались следующим способом нахождения приближенного значения квадратного корня их числа х. Число х они представляли в виде суммы а 2 +b, где а 2 ближайший к числу х точный квадрат натурального числа а (а 2 ?х), и пользовались формулой . (1)
Извлечем с помощью формулы (1) корень квадратный, например из числа 28:
Результат извлечения корня из 28 с помощью МК 5,2915026.
Как видим способ вавилонян дает хорошее приближение к точному значению корня.
2. Исаак Ньютон разработал метод извлечения квадратного корня, который восходил еще к Герону Александрийскому (около 100 г. н.э.). Метод этот (известный как метод Ньютона) заключается в следующем.
Пусть а 1 – первое приближение числа (в качестве а 1 можно брать значения квадратного корня из натурального числа – точного квадрата, не превосходящего х) .
Следующее, более точное приближение а 2 числа найдется по формуле .
Формулы корней. Свойства квадратных корней.
Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно “не очень. ”
И для тех, кто “очень даже. “)
В предыдущем уроке мы разобрались, что такое квадратный корень . Пришла пора разобраться, какие существуют формулы для корней , каковы свойства корней , и что со всем этим можно делать.
Формулы корней, свойства корней и правила действий с корнями – это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает. Хотя и в трех формулах корней многие плутают, да.
Начнём с самой простой. Вот она:
Если Вам нравится этот сайт.
Кстати, у меня есть ещё парочка интересных сайтов для Вас.)
Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся – с интересом!)
можно познакомиться с функциями и производными.
Корнем n -ой степени натурального числа a называется такое число, n -ая степень которого равна a . Корень обозначается так: . Символ √ называется знаком корня или знаком радикала , число a – подкоренное число , n – показатель корня .
Действие, посредством которого находится корень данной степени, называется извлечением корня .
Так как, согласно определению понятия о корне n -ой степени
то извлечение корня – действие, обратное возведению в степень , при помощи которого по данной степени и по данному показателю степени находят основание степени.
Квадратный корень
Квадратным корнем из числа a называется число, квадрат которого равен a .
Действие, с помощью которого вычисляется квадратный корень, называется извлечением квадратного корня.
Извлечение квадратного корня – действие обратное возведению в квадрат (или возведению числа во вторую степень). При возведении в квадрат известно число, требуется найти его квадрат. При извлечении квадратного корня известен квадрат числа, требуется по нему найти само число.
Поэтому для проверки правильности проведённого действия, можно найденный корень возвести во вторую степень и, если степень будет равна подкоренному числу, значит корень был найден правильно.
Рассмотрим извлечение квадратного корня и его проверку на примере. Вычислим или (показатель корня со значением 2 обычно не пишут, так как 2 – это самый маленький показатель и следует помнить, что если над знаком корня нет показателя, то подразумевается показатель 2), для этого нам нужно найти число, при возведении которого во вторую степень получится 49. Очевидно, что таким числом является 7, так как
Вычисление квадратного корня
Если данное число равно 100 или меньше, то квадратный корень из него можно вычислить с помощью таблицы умножения . Например квадратный корень из 25 – это 5, потому что 5 · 5 = 25.
Теперь рассмотрим способ нахождения квадратного корня из любого числа без использования калькулятора. Для примера возьмём число 4489 и начнём поэтапно вычислять.
- Определим, из каких разрядов должен состоять искомый корень. Так как 10 2 = 10 · 10 = 100, а 100 2 = 100 · 100 = 10000, то становится ясно, что искомый корень должен быть больше 10 и меньше 100, т.е. состоять из десятков и единиц.
- Находим число десятков корня. От перемножения десятков получаются сотни, в нашем числе их 44, поэтому корень должен содержать столько десятков, чтобы квадрат десятков давал приблизительно 44 сотни. Следовательно в корне должно быть 6 десятков, потому что 60 2 = 3600, а 70 2 = 4900 (это слишком много). Таким образом мы выяснили, что наш корень содержит 6 десятков и несколько единиц, так как он находится в в диапазоне от 60 до 70.
- Определить число единиц в корне поможет таблица умножения. Посмотрев на число 4489, мы видим, что последняя цифра в нём 9. Теперь смотрим в таблицу умножения и видим что 9 единиц может получится только при возведении в квадрат чисел 3 и 7. Значит корень числа будет равен 63 или 67.
- Проверяем полученные нами числа 63 и 67 возводя их в квадрат: 63 2 = 3969, 67 2 = 4489.
Факт 1.
(bullet) Возьмем некоторое неотрицательное число (a) (то есть (ageqslant 0) ). Тогда (арифметическим) квадратным корнем из числа (a) называется такое неотрицательное число (b) , при возведении которого в квадрат мы получим число (a) : [sqrt a=bquad text<то же самое, что >quad a=b^2] Из определения следует, что (ageqslant 0, bgeqslant 0) . Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть (100^2=10000geqslant 0) и ((-100)^2=10000geqslant 0) .
(bullet) Чему равен (sqrt<25>) ? Мы знаем, что (5^2=25) и ((-5)^2=25) . Так как по определению мы должны найти неотрицательное число, то (-5) не подходит, следовательно, (sqrt<25>=5) (так как (25=5^2) ).
Нахождение значения (sqrt a) называется извлечением квадратного корня из числа (a) , а число (a) называется подкоренным выражением.
(bullet) Исходя из определения, выражения (sqrt<-25>) , (sqrt<-4>) и т.п. не имеют смысла.
Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от (1) до (20) : [begin
Факт 3.
Какие действия можно выполнять с квадратными корнями?
(bullet) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть [sqrt apmsqrt bne sqrt
Пример: (sqrt<32>cdot sqrt 2=sqrt<32cdot 2>=sqrt<64>=8) ; (sqrt<768>:sqrt3=sqrt<768_3>=sqrt<256>=16) ; (sqrt<(-25)cdot (-64)>=sqrt<25cdot 64>=sqrt<25>cdot sqrt<64>= 5cdot 8=40) . (bullet) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем (sqrt<44100>) . Так как (44100:100=441) , то (44100=100cdot 441) . По признаку делимости число (441) делится на (9) (так как сумма его цифр равна 9 и делится на 9), следовательно, (441:9=49) , то есть (441=9cdot 49) .
Таким образом, мы получили: [sqrt<44100>=sqrt<9cdot 49cdot 100>= sqrt9cdot sqrt<49>cdot sqrt<100>=3cdot 7cdot 10=210] Рассмотрим еще один пример: [sqrt
(bullet) Покажем, как вносить числа под знак квадратного корня на примере выражения (5sqrt2) (сокращенная запись от выражения (5cdot sqrt2) ). Так как (5=sqrt<25>) , то Заметим также, что, например,
1) (sqrt2+3sqrt2=4sqrt2) ,
2) (5sqrt3-sqrt3=4sqrt3)
3) (sqrt a+sqrt a=2sqrt a) .
Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число (sqrt2) мы не можем. Представим, что (sqrt2) – это некоторое число (a) . Соответственно, выражение (sqrt2+3sqrt2) есть не что иное, как (a+3a) (одно число (a) плюс еще три таких же числа (a) ). А мы знаем, что это равно четырем таким числам (a) , то есть (4sqrt2) .
Факт 4.
(bullet) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака (sqrt <> ) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа (16) можно, потому что (16=4^2) , поэтому (sqrt<16>=4) . А вот извлечь корень из числа (3) , то есть найти (sqrt3) , нельзя, потому что нет такого числа, которое в квадрате даст (3) .
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа (sqrt3, 1+sqrt2, sqrt<15>) и т.п. являются иррациональными.
Также иррациональными являются числа (pi) (число “пи”, приблизительно равное (3,14) ), (e) (это число называют числом Эйлера, приблизительно оно равно (2,7) ) и т.д.
(bullet) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой (mathbb
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.
Эта статья также доступна на следующих языках: Тайский
Источники:
http://www.interesnyekartinki.ru/kak-izvlech-koren-kvadratnyi-matematika-kotoraya-mne-nravitsya.html
http://mobohan.ru/plaster/kak-izvlech-kvadratnyi-koren-vruchnuyu-matematika-kotoraya-mne/
http://tmzs.ru/kak-iskat-koren-iz-chisla-matematika-kotoraya-mne-nravitsya/