Что значит правильная четырехугольная пирамида. Пирамида

Пирамида

Пирамида – многогранник, основание которого — многоугольник , а остальные грани — треугольники, имеющие общую вершину.

По числу углов основания различают пирамиды треугольные , четырёхугольные и т. д.

Вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания.

Основание — многоугольник, которому не принадлежит вершина пирамиды.

Апофема — высота боковой грани правильной пирамиды, проведенная из ее вершины.

Высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания.

Некоторые свойства пирамиды

1) Если все боковые ребра равны, то

около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр

боковые ребра образуют с плоскостью основания равные углы

Верно и обратное.

Если боковые ребра образуют с плоскостью основания равные углы, то все боковые ребра пирамиды равны.

Если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

2) Если все грани пирамиды наклонены к плоскости основания под одним углом , то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр

Верно и обратное.

Виды пирамид

Пирамида называется правильной , если основанием её является правильный многоугольник, а вершина проецируется в центр основания.

Для правильной пирамиды справедливо:

– боковые ребра правильной пирамиды равны;

– в правильной пирамиде все боковые грани — равные равнобедренные треугольники;

– в любую правильную пирамиду можно вписать сферу;

– около любой правильной пирамиды можно описать сферу;

– площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.


Пирамида называется прямоугольной , если одно из боковых рёбер пирамиды перпендикулярно основанию. Тогда это ребро и есть высота пирамиды.

Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.

Тетраэдр – треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды.

Геометрические фигуры. Правильная пирамида.

Правильная пирамида – когда основанием пирамиды является правильный многоугольник, а высота проецируется в центр основания (или проходит через него).

В правильной пирамиде все боковые ребра имеют одинаковую величину, и каждая боковая грань является равнобедренными треугольниками одного размера.

Правильная пирамида обладает следующими свойствами:

  • боковые рёбра правильной пирамиды имеют равную величину;
  • в правильной пирамиде каждая боковая грань — конгруэнтный равнобедренный треугольник;
  • во все правильные пирамиды можно как вписать, так и описать вокруг неё сферу;
  • когда центры вписанной и описанной сферы совпадают, значит, сумма плоских углов у вершины пирамиды равняется , а всякий из них соответственно , где n — число сторон многоугольника основания;
  • площадь боковой поверхности правильной пирамиды равняется ½ произведения периметра основания на апофему.

Формулы для правильной пирамиды.

V – объем пирамиды,

S – площадь основания пирамиды,

h – высота пирамиды,

Sb – площадь боковой поверхности пирамиды,

a – апофема (не путать с α) пирамиды,

P – периметр основания пирамиды,

n – число сторон основания пирамиды,

b – длина бокового ребра пирамиды,

α – плоский угол при вершине пирамиды.

Ниже указанная формула определения объема используется лишь для правильной пирамиды:

Читать еще:  Сделать петуха из фетра елочная игрушка. Шьем петуха из ткани

V – объем правильной пирамиды,

h – высота правильной пирамиды,

n – количество сторон правильного многоугольника, основания правильной пирамиды,

a – длина стороны правильного многоугольника.

Боковое ребро правильной пирамиды находят по формуле:

где b — боковое ребро правильной пирамиды (SA, SB, SC, SD либо SE),

n — количество сторон правильного многоугольника (основание правильной пирамиды),

a — сторона правильного многоугольника (AB, BC, CD, DE либо EA) – основания правильной пирамиды,

h — высота правильной пирамиды (OS).

Указания к решению задач. Свойства, которые мы перечислили выше, помогают при практическом решении. Когда нужно определить углы наклона граней, их поверхность и так далее, значит общая методика сводится к разбиению всей объемной фигуры на отдельные плоские фигуры и применение их свойств для определения отдельных элементов пирамиды, так как большинство элементов оказываются общими для нескольких фигур.

Нужно разбить всю объемную фигуру на отдельные элементы – треугольники, квадраты, отрезки. Дальше, к отдельным элементам применяем знания из курса планиметрии, что очень упрощает определение ответа.

Правильная треугольная пирамида.

Правильная треугольная пирамида – это пирамида, у которой основанием оказывается правильный треугольник, а вершина опускается в центр основания.

Формулы для правильной треугольной пирамиды.

Формула для нахождения объема правильной треугольной пирамиды:

V – объем правильной пирамиды, которая имеет в основании правильный (равносторонний) треугольник,

h – высота правильной пирамиды,

a – длина стороны основания правильной пирамиды.

Так как правильная треугольная пирамида – это частный случай правильной пирамиды, значит, формулы, верные для правильной пирамиды, оказываются верными и для правильной треугольной.

Еще одним частным случаем правильно пирамиды является тетраэдр.

Пирамида. Визуальный гид (2020)

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Что такое пирамида?

Как она выглядит?

Вместо того, чтобы читать длинное определение, достаточно просто посмотреть на картинку:

Видишь: у пирамиды внизу (говорят «в основании») какой-нибудь многоугольник, и все вершины этого многоугольника соединены с некоторой точкой в пространстве (эта точка называется «вершина»).

У всей этой конструкции ещё есть боковые грани, боковые рёбра и рёбра основания. Ещё раз нарисуем пирамиду вместе со всеми этими названиями:

Некоторые пирамиды могут выглядеть очень странно, но всё равно это – пирамиды.

Вот, например, совсем «косая» пирамида.

И ещё немного о названиях: если в основании пирамиды лежит треугольник, то пирамида называется треугольной, если четырёхугольник, то четырёхугольной, а если стоугольник, то … догадайся сам.

Высота пирамиды.

При этом точка, куда oпустилась высота, называется основанием высоты. Обрати внимание, что в «кривых» пирамидах высота может вообще оказаться вне пирамиды. Вот так:

И ничего в этом страшного нет. Похоже на тупоугольный треугольник.

Правильная пирамида.

Много сложный слов? Давай расшифруем: «В основании – правильный многоугольник» – это понятно. А теперь вспомним, что у правильного многоугольника есть центр – точка, являющаяся центром и вписанной, и описанной окружности.

Ну вот, а слова «вершина проецируется в центр основания» означают, что основание высоты попадает как раз в центр основания. Смотри, как ровненько и симпатично выглядит правильная пирамида.

Шестиугольная: в основании – правильный шестиугольник, вершина проецируется в центр основания.

Четырёхугольная: в основании – квадрат, вершина проецируется в точку пересечения диагоналей этого квадрата.

Читать еще:  Учим односложные и многосложные прилагательные в английском.

Треугольная: в основании – правильный треугольник, вершина проецируется в точку пересечения высот (они же и медианы, и биссектрисы) этого треугольника.

Очень важные свойства правильной пирамиды:

В правильной пирамиде

  • все боковые рёбра равны.
  • все боковые грани – равнобедренные треугольники и все эти треугольники равны.

Объем пирамиды

Главная формула объема пирамиды:

Откуда взялась именно ? Это не так уж просто, и на первых порах нужно просто запомнить, что у пирамиды и конуса в формуле объема есть , а у цилиндра – нет.

Теперь давай посчитаем объем самых популярных пирамид.

Объем правильной треугольной пирамиды

Пусть сторона основания равна , а боковое ребро равно . Нужно найти и .

– это площадь правильного треугольника .

Вспомним, как искать эту площадь. Используем формулу площади:

У нас « » – это , а « » – это тоже , а .

По теореме Пифагора для

Чему же равно ? Это радиус описанной окружности в , потому что пирамидаправильная и, значит, – центр .

Найдем (Подробнее смотри в теме «Правильный треугольник»).

, так как – точка пересечения и медиан тоже.

(теорема Пифагора для )

Подставим в формулу для .

И подставим все в формулу объема:

Внимание: если у тебя правильный тетраэдр (т.е. ), то формула получается такой:

Объем правильной четырехугольной пирамиды

Пусть сторона основания равна , а боковое ребро равно .

Здесь и искать не нужно; ведь в основании – квадрат, и поэтому .

Найдем . По теореме Пифагора для

Известно ли нам ? Ну, почти. Смотри:

(это мы увидели, рассмотрев ).

Подставляем в формулу для :

А теперь и и подставляем в формулу объема.

Объем правильной шестиугольной пирамиды.

Пусть сторона основания равна , а боковое ребро .

Как найти ? Смотри, шестиугольник состоит ровно из шести одинаковых правильных треугольников. Площадь правильного треугольника мы уже искали при подсчете объема правильной треугольной пирамиды, здесь используем найденную формулу.

Теперь найдем (это ).

По теореме Пифагора для

Но чему же равно ? Это просто , потому что (и все остальные тоже) правильный.

ПИРАМИДА. КОРОТКО О ГЛАВНОМ

Пирамида – это многогранник, который состоит из любого плоского многоугольника ( основание пирамиды ), точки, не лежащей в плоскости основания, ( вершина пирамиды ) и всех отрезков, соединяющих вершину пирамиды с точками основания ( боковые ребра ).

Высота пирамиды – перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Правильная пирамида – пирамида, у которой в основании лежит правильный многоугольник, а вершина пирамиды проецируется в центр основания.

Свойство правильной пирамиды:

  • В правильной пирамиде все боковые рёбра равны.
  • Все боковые грани – равнобедренные треугольники и все эти треугольники равны.

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике,

А также получить доступ к учебнику YouClever без ограничений.

можно кликнув по этой ссылке.

Комментарии

Нет вообще ничего, что искал

Кирилл, а что вы искали?

куда падает высота в пирамиде с основанием равнобедренный треугольник?

В центр окружности описанной вокруг равнобедренного треугольника, лежащего в основании пирамиды.

А есть какая-то теория пирамид привязанная к целым числам? Т.е. не высота пирамиды h, а высота пирамиды n*h, где h целое число.

Анатолий, а чем особенны такие пирамиды? Мы ведь можем взять любую, и умножить все рёбра на одно и то же число, чтобы высота стала выражаться целым числом. Рёбра тоже должны быть целыми или только высота?

Читать еще:  Что означает ведьма во сне? К чему снится ведьма или колдунья.

Было бы здорово добавить информацию про связь окружности (внутри или вокруг основания) и расстояния от основания высоты до граней/сторон основания. Это все время встречается в задачах, а в интернете теорию почти не найти

Фрэнки, спасибо, скоро добавим.

Распространение материалов без согласования допустимо при наличии dofollow-ссылки на страницу-источник.

Политика конфиденциальности

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

  • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

2/3 статьи, а также разбор задач доступны только ученикам YouClever.

Или оставьте Email и получите доступ к 5-ти статьям учебника бесплатно.

Источники:

http://egemaximum.ru/piramida/

http://www.calc.ru/Geometricheskiye-Figury-Pravilnaya-Piramida.html

http://youclever.org/book/piramida-1

Ссылка на основную публикацию
Статьи на тему: