Круги эйлера на примере решения задачи.

Круги эйлера на примере решения задачи.

Задачи для решения учащимися

1. В классе 35 учеников. Все они являются читателями школьной и район­ной библиотек. Из них 25 берут книги в школьной библиотеке, 20 — в рай­онной. Сколько из них:

а) не являются читателями школь­ной библиотеки;

б) не являются читателями район­ной библиотеки;

в) являются читателями только школьной библиотеки;

г) являются читателями только рай­онной библиотеки;

д) являются читателями обеих библиотек?

2.Каждый ученик в классе изучает английский или немецкий язык, или оба этих языка. Английский язык изучают 25 человек, немецкий — 27 человек, а тот и другой — 18 человек. Сколько всего учеников в классе?

3.На листе бумаги начертили круг площадью 78 см2 и квадрат площадью 55 см2. Площадь пересечения круга и квадрата равна 30 см2. Не занятая кру­гом и квадратом часть листа имеет пло­щадь 150 см2. Найдите площадь листа.

4. В группе туристов 25 человек. Среди них 20 человек моложе 30 лет и 15 человек старше 20 лет. Может ли так быть? Если может, то в каком случае?

5. В детском саду 52 ребенка. Каж­дый из них любит пирожное или моро­женое, или то и другое. Половина де­тей любит пирожное, а 20 человек – пирожное и мороженое. Сколько де­тей любит мороженое?

6. В классе 36 человек. Ученики это­го класса посещают математический, физический и химический кружки, причем математический кружок по­сещают 18 человек, физический — 14, химический — 10. Кроме того, извест­но, что 2 человека посещают все три кружка, 8 человек —.и математиче­ский, и физический, 5 — и математи­ческий, и химический, 3 — и физи­ческий, и химический кружки. Сколько учеников класса не посещают ни­какие кружки?

7. После каникул классный руково­дитель спросил, кто из ребят ходил в театр, кино или цирк. Оказалось, что из 36 учеников двое не были ни в кино, ни в театре, ни в цирке. В кино побы­вали 25 человек; в театре — 11; в цир­ке — 17; и в кино, и в театре — 6; и в кино, и в цирке — 10; и в театре, и в цирке — 4. Сколько человек побы­вали в театре, кино и цирке одновре­менно?

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» – символ «&».

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети интернет. Какое количество страниц (в тысячах) будет найдено по запросу Крейсер & Линкор? Считается, что все вопросы выполняются практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Решение логических задач с помощью кругов Эйлера

Решение логических задач с помощью кругов Эйлера

Круги Эйлера – задачи на пересечение или объединение множеств Это новый тип задач, в которых требуется найти некоторое пересечение множеств или их объединение, соблюдая условия задачи.

Круги Эйлера — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Метод Эйлера является незаменимым при решении некоторых задач, а также упрощает рассуждения. Однако, прежде чем приступить к решению задачи, нужно проанализировать условие. Иногда с помощью арифметических действий решить задачу легче.

Задача 1. В классе 35 учеников. Из них 20 человек занимаются в математическом кружке, 11 — в биологическом, 10 ребят не посещают эти кружки. Сколько биологов увлекаются математикой?

Изобразим эти кружки на рисунке. Мо­жем, например, начертить в школьном дворе большой круг, а в нем два поменьше. В левый круг, обозначенный буквой М, поместим всех математиков, а в правый, обозначенный буквой Б, всех биологов. Очевидно, в общей части кругов, обозна­ченной буквами МБ, окажутся те самые биологи-математики, ко­торые нас интересуют. Остальных ребят класса, а их 10, попросим не выходить из внешнего круга, самого большого. Теперь посчита­ем: всего внутри большого круга 35 ребят, внутри двух меньших 35 — 10 = 25 ребят. Внутри «математического» круга М находятся 20 ребят, значит, в той части «биологического» круга, которая рас­положена вне круга М, находятся 25 — 20 = 5 биологов, не посе­щающих математический кружок. Остальные биологи, их 11 — 5= = 6 человек, находятся в общей части кругов МБ. Таким образом, 6 биологов увлекаются математикой.

Читать еще:  Мак пак от джова. Моды от джова

Задача 2. .В классе 38 человек. Из них 16 играют в баскетбол, 17 – в хоккей, 18 – в футбол. Увлекаются двумя видами спорта – баскетболом и хоккеем – четверо, баскетболом и футболом – трое, футболом и хоккеем – пятеро. Трое не увлекаются ни баскетболом, ни хоккеем, ни футболом.

Сколько ребят увлекается лишь одним из этих видов спорта?

Решение. Воспользуемся кругами Эйлера. Пусть большой круг изображает всех учащихся класса, а три меньших круга Б, Х и Ф изображают соответственно баскетболистов, хоккеистов и футболистов. Тогда фигура Z, общая часть кругов Б, Х и Ф, изображает ребят, увлекающихся тремя видами спорта. Из рассмотрения кругов Эйлера видно, что одним лишь видом спорта – баскетболом занимаются 16 – (4 + z + 3) = 9 – z; одним лишь хоккеи 17 – (4 + z + 5) = 8 – z;

одним лишь футболом 18 – (3 + z + 5) = 10 – z.

Составляем уравнение, пользуясь тем, что класс разбился на отдельные группы ребят; количества ребят в каждой группе обведены на рисунке рамочкам:

3 + (9 – z) + (8 – z) + (10 – z) + 4 + 3 + 5 + z = 38,

Таким образом, двое ребят увлекаются всеми тремя видами спорта.

Складывая числа 9 – z, 8 – z и 10 – z, где z = 2, найдем количество ребят, увлекающихся лишь одним видом спорта: 21 человек.

Двое ребят увлекаются всеми тремя видами спорта человека.

Увлекающихся лишь одним видом спорта: 21 человек.

Задача 3. Некоторые ребята из нашего класса любят ходить в кино. Известно, что 15 ребят смотрели фильм «Обитаемый остров», 11 человек – фильм «Стиляги», из них 6 смотрели и «Обитаемый остров», и «Стиляги». Сколько человек смотрели только фильм «Стиляги»?

Чертим два множества таким образом:

6 человек, которые смотрели фильмы «Обитаемый остров» и «Стиляги», помещаем в пересечение множеств.

15 – 6 = 9 – человек, которые смотрели только «Обитаемый остров».

11 – 6 = 5 – человек, которые смотрели только «Стиляги».

Ответ. 5 человек смотрели только «Стиляги».

Задача 4. Среди школьников шестого класса проводилось анкетирование по любимым мультфильмам. Самыми популярными оказались три мультфильма: «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны», «Волк и теленок». Всего в классе 38 человек. «Белоснежку и семь гномов» выбрали 21 ученик, среди которых трое назвали еще «Волк и теленок», шестеро – «Губка Боб Квадратные Штаны», а один написал все три мультфильма. Мультфильм «Волк и теленок» назвали 13 ребят, среди которых пятеро выбрали сразу два мультфильма. Сколько человек выбрали мультфильм «Губка Боб Квадратные Штаны»?

В этой задаче 3 множества, из условий задачи видно, что все они пересекаются между собой. Получаем такой чертеж:

Учитывая условие, что среди ребят, которые назвали мультфильм «Волк и теленок» пятеро выбрали сразу два мультфильма, получаем:

Читать еще:  Перья сонник. Перья толкование сонника

21 – 3 – 6 – 1 = 11 – ребят выбрали только «Белоснежку и семь гномов».

13 – 3 – 1 – 2 = 7 – ребят смотрят только «Волк и теленок».

Получаем:

38 – (11 + 3 + 1 + 6 + 2 + 7) = 8 – человек смотрят только «Губка Боб Квадратные Штаны».

Делаем вывод, что «Губка Боб Квадратные Штаны» выбрали 8 + 2 + 1 + 6 = 17 человек.

Ответ. 17 человек выбрали мультфильм «Губка Боб Квадратные Штаны».

Задача 5. В магазин «Мир музыки» пришло 35 покупателей. Из них 20 человек купили новый диск певицы Максим, 11 – диск Земфиры, 10 человек не купили ни одного диска. Сколько человек купили диски и Максим, и Земфиры?

Изобразим эти множества на кругах Эйлера.

Теперь посчитаем: Всего внутри большого круга 35 покупателей, внутри двух меньших 35–10=25 покупателей. По условию задачи 20 покупателей купили новый диск певицы Максим, следовательно, 25 – 20 = 5 покупателей купили только диск Земфиры. А в задаче сказано, что 11 покупателей купили диск Земфиры, значит 11 – 5 = 6 покупателей купили диски и Максим, и Земфиры:

Ответ: 6 покупателей купили диски и Максим, и Земфиры.

Задача 6. На полке стояло 26 волшебных книг по заклинаниям. Из них 4 прочитал и Гарри Поттер, и Рон. Гермиона прочитала 7 книг, которых не читали ни Гарри Поттер, ни Рон, и две книги, которые читал Гарри Поттер. прочитал 11 книг. Сколько книг прочитал Рон?

Учитывая условия задачи, чертеж будет таков:

Так как Гарри Поттер всего прочитал 11 книг, из них 4 книги читал Рон и 2 книги – Гермиона, то 11 – 4 – 2 = 5 – книг прочитал только Гарри. Следовательно,

26 – 7 – 2 – 5 – 4 = 8 – книг прочитал Рон.

Ответ. 8 книг прочитал Рон.

Задача 7. В пионерском лагере 70 ребят. Из них 27 занимаются в драмкружке, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8 спортсменов; 3 спортсмена посещают и драмкружок и хор. Сколько ребят не поют, не увлекаются спортом, не занимаются в драмкружке? Сколько ребят заняты только спортом?

Изобразим множества следующим образом:

70 – (6 + 8 + 10 + 3 + 13 + 6 + 5) = 19 – ребят не поют, не увлекаются спортом, не занимаются в драмкружке. Только спортом заняты 5 человек.

Ответ. 5 человек заняты только спортом.

Задача 8. Из 100 ребят, отправляющихся в детский оздоровительный лагерь, кататься на сноуборде умеют 30 ребят, на скейтборде – 28, на роликах – 42. На скейтборде и на сноуборде умеют кататься 8 ребят, на скейтборде и на роликах – 10, на сноуборде и на роликах – 5, а на всех трех – 3. Сколько ребят не умеют кататься ни на сноуборде, ни на скейтборде, ни на роликах?

Всеми тремя спортивными снарядами владеют три человека, значит, в общей части кругов вписываем число 3. На скейтборде и на роликах умеют кататься 10 человек, а 3 из них катаются еще и на сноуборде. Следовательно, кататься только на скейтборде и на роликах умеют 10-3=7 ребят. Аналогично получаем, что только на скейтборде и на сноуборде умеют кататься 8-3=5 ребят, а только на сноуборде и на роликах 5-3=2 человека. Внесем эти данные в соответствующие части. Определим теперь, сколько человек умеют кататься только на одном спортивном снаряде. Кататься на сноуборде умеют 30 человек, но 5+3+2=10 из них владеют и другими снарядами, следовательно, только на сноуборде умеют кататься 20 ребят. Аналогично получаем, что только на скейтборде умеют кататься 13 ребят, а только на роликах – 30 ребят. По условию задачи всего 100 ребят. 20+13+30+5+7+2+3=80 – ребят умеют кататься хотя бы на одном спортивном снаряде. Следовательно, 20 человек не умеют кататься ни на одном спортивном снаряде.

Читать еще:  Главные идеи буддизма. Праведный образ жизни

Ответ. 20 человек не умеют кататься ни на одном спортивном снаряде.

Круги Эйлера

Круги Эйлера представляют собой особую геометрическую схему, необходимую для поиска и более наглядного отображения логических связей между понятиями и явлениями, а также для изображения отношений между определенным множеством и его частью. Благодаря наглядности они значительно упрощают любые рассуждения и помогают быстрее находить ответы на вопросы.

Автором кругов является известный математик Леонард Эйлер, который считал, что они необходимы, чтобы облегчить размышления человека. С момента своего появления метод приобрел широкую популярность и признание.

Позже круги Эйлера использовали в своих работах многие известные ученые, к примеру, чешский математик Бернард Больцано, немецкий математик Эрнест Шредер, английский философ и логик Джон Венн и другие. Сегодня методика служит основной многих упражнений на развитие мышления, в том числе и упражнений из нашей бесплатной онлайн-программы «Нейробика».

Для чего нужны круги Эйлера

Круги Эйлера имеют прикладное значение, ведь с их помощью можно решать множество практических задач на пересечение или объединение множеств в логике, математике, менеджменте, информатике, статистике и т.д. Полезны они и в жизни, т.к., работая с ними, можно получать ответы на многие важные вопросы, находить массу логических взаимосвязей.

Есть несколько групп кругов Эйлера:

  • равнозначные круги (рисунок 1 на схеме);
  • пересекающиеся круги (рисунок 2 на схеме);
  • подчиненные круги (рисунок 3 на схеме);
  • соподчиненные круги (рисунок 4 на схеме);
  • противоречащие круги (рисунок 5 на схеме);
  • противоположные круги (рисунок 6 на схеме).

Но в упражнениях на развитие мышления чаще всего встречаются два вида кругов:

  • Круги, описывающие объединения понятий и демонстрирующие вложенность одного в другое. Посмотрите пример:

  • Круги, описывающие пересечения разных множеств, имеющих некоторые общие признаки. Посмотрите пример:

Результат использования кругов Эйлера проследить на этом примере очень просто: обдумывая, какую профессию выбрать, вы можете либо долго рассуждать, пытаясь понять, что больше подойдет, а можете нарисовать аналогичную диаграмму, ответить на вопросы и сделать логический вывод.

Применять метод очень просто. Также его можно назвать универсальным – подходящим для людей всех возрастов: от детей дошкольного возраста (в детских садах детям преподают круги, начиная с 4-5-летнего возраста) до студентов (задачи с кругами есть, к примеру, в тестах ЕГЭ по информатике) и ученых (круги широко применяются в академической среде).

Типичный пример кругов Эйлера

Чтобы вы могли лучше понять, как «работают» круги Эйлера, рекомендуем познакомиться с типичным примером. Обратите внимание на нижеследующий рисунок:

На рисунке зеленым цветов отмечено наибольшее множество, представляющее собой все варианты игрушек. Один из них – это конструкторы (голубой овал). Конструкторы – это отдельное множество само по себе, но в то же время и часть общего множества игрушек.

Заводные игрушки (фиолетовый овал) тоже относятся к множеству игрушек, однако к множеству конструктора они отношения не имеют. Зато заводной автомобиль (желтый овал), пусть и является самостоятельным явлением, но считается одним из подмножеств заводных игрушек.

По подобной схеме строятся и решаются многие задачи (включая и задания на развитие когнитивных способностей), задействующие круги Эйлера. Давайте разберем одну такую задачу (кстати, именно ее в 2011 году внесли на демонстрационный тест ЕГЭ по информатике и ИКТ).

Пример решения задачи с помощью кругов Эйлера

Условия задачи таковы: приведенная таблица показывает, сколько страниц было найдено в Интернете по конкретным запросам:

Источники:

http://www.sites.google.com/site/osnovylogikilogiceskieosnovy/krugi-ejlere

http://pandia.ru/text/80/398/205.php

http://4brain.ru/blog/%D0%BA%D1%80%D1%83%D0%B3%D0%B8-%D1%8D%D0%B9%D0%BB%D0%B5%D1%80%D0%B0/

Ссылка на основную публикацию
Статьи на тему: