Графики показательной функции примеры. Показательная функция
Содержание
- 1 Графики показательной функции примеры. Показательная функция
- 1.1 Показательная функция
- 1.2 Тема урока: «Показательная функция, ее свойства и график»
- 1.3 Показательная функция – свойства, графики, формулы
- 1.4 Определение
- 1.5 Свойства показательной функции
- 1.6 Графики показательной функции
- 1.7 Дифференцирование показательной функции
- 1.8 Интеграл
- 1.9 Выражения через комплексные числа
- 1.10 Разложение в ряд
Показательная функция
1.Показательная функция – это функция вида у(х) =а х , зависящая от показателя степени х, при постоянном значении основания степени a , где а > 0, a ≠ 0, xϵR (R – множество действительных чисел).
Рассмотрим график функции, если основание не будет удовлетворять условию: а>0
a) a 1
Область определения функции (ООФ)
Область допустимых значений функции (ОДЗ)
3. Нули функции (у = 0)
4. Точки пересечения с осью ординат oy (x = 0)
5. Возрастания, убывания функции
Если , то функция f(x) возрастает
Если , то функция f(x) убывает
Функция y= , при 0 Функция у =
, при a> 1 монотонно возрастает
Это следует из свойств монотонности степени с действительным показателем.
6. Чётность, нечётность функции
Функция у = не симметрична относительно оси 0у и относительно началу координат, следовательно не является ни чётной, ни нечётной. (Функция общего вида)
7. Функция у = экстремумов не имеет
8. Свойства степени с действительным показателем:
Пусть а > 0; a≠1
b> 0; b≠1
Тогда для xϵR; yϵR:
Свойства монотонности степени:
если , то
Например:
Если a> 0, , то .
Показательная функция непрерывна в любой точке ϵ R.
9. Относительное расположение фунцкции
Чем больше основание а, тем ближе к осям ох и оу
Тема урока: «Показательная функция, ее свойства и график»
Разделы: Математика
Цели:
- ввести определение показательной функции;
- сформулировать её основные свойства;
- показать построение графиков функции
Концентрация внимания:
Концентрацию внимания определить следующим образом — число воспроизведённых цифр умножить на 0,1 и полученное произведение выразить в процентах.
Определение. Функция вида называется показательной функцией.
Замечание. Исключение из числа значений основания a чисел 0; 1 и отрицательных значений a объясняется следующими обстоятельствами:
Построить графики функций: и
.
Когда заполняется таблица, то параллельно с заполнением решаются задания.
Задание № 1. (Для нахождения области определения функции).
Какие значения аргумента являются допустимыми для функций:
Задание № 2. (Для нахождения области значений функции).
На рисунке изображен график функции. Укажите область определения и область значений функции:
Задание № 3. (Для указания промежутков сравнения с единицей).
Каждую из следующих степеней сравните с единицей:
Задание № 4. (Для исследования функции на монотонность).
Сравнить по величине действительные числа m и n если:
Задание № 5. (Для исследования функции на монотонность).
Сделайте заключение относительно основания a, если:
В одной координатной плоскости построены графики функций:
y(x) = 10 x ; f(x) = 6 x ; z(x) — 4 x
Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x 0
В одной координатной плоскости построены графики функций:
y(x) = (0,1) x ; f(x) = (0,5) x ; z(x) = (0,8) x .
Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x 0
Число e играет особую роль в математическом анализе. Показательная функция с основанием e, называется экспонентой и обозначается y = e x .
Первые знаки числа e запомнить несложно: два, запятая, семь, год рождения Льва Толстого — два раза, сорок пять, девяносто, сорок пять.
Колмогоров п. 35; № 445-447; 451; 453.
Повторить алгоритм построения графиков функций, содержащих переменную под знаком модуля.
Показательная функция – свойства, графики, формулы
Определение
Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3. , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (см. ниже ⇓), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где – произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .
Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции».
Свойства показательной функции
Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел ( ) :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .
Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:
При b = e , получаем выражение показательной функции через экспоненту:
Частные значения
Графики показательной функции
На рисунке представлены графики показательной функции
y ( x ) = a x
для четырех значений основания степени: a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0
Дифференцирование показательной функции
Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.
Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных:
.
Пусть задана показательная функция:
.
Приводим ее к основанию e :
Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку – это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.
Производная показательной функции
Пример дифференцирования показательной функции
Найти производную функции
y = 3 5 x
Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда
Из таблицы производных находим:
.
Поскольку 5ln 3 – это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.
Интеграл
Выражения через комплексные числа
Рассмотрим функцию комплексного числа z:
f ( z ) = a z
где z = x + iy ; i 2 = – 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда
.
Аргумент φ определен не однозначно. В общем виде
φ = φ + 2 πn ,
где n – целое. Поэтому функция f ( z ) также не однозначна. Часто рассматривают ее главное значение
.
Разложение в ряд
Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Автор: Олег Одинцов . Опубликовано: 21-02-2014 Изменено: 19-11-2018
Источники:
http://www.teslalab.ru/articles/algebra/45/
http://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/412218/
http://1cov-edu.ru/mat_analiz/funktsii/pokazatelnaya/