Все о степенной функции. Функции и графики

Функция. Степенная функция.

Функции у = ах, у = ax 2 , у = а/х – являются частными видами степенной функции при n = 1, n = 2, n = -1.

Так как нулевая степень всякого числа, не равного нулю, равна единице, то при n = 0 степенная функция становится постоянной величиной, т.е. у = а. Поясним подробнее: выражение ноль в нулевой степени неопределенно, в том случае, когда функция у = ax 0 для всех значений х, естественно кроме нуля, равна а, и следовательно, если х = 0, то у = а. В таком случае график представлен прямой линией, параллельной оси абсцисс).

Остальные случаи делятся на группы:

1) n – положительное число;

2) n – отрицательное число.

Видны графики функции у = х n при n = 0,1; 1/4; 1/3; 1/2; 2/3; 1;3/2; 2 ; 3; 4; 10. Все они проходят через начало координат и точку (1; 1).

При n = 1 получаем прямую являющуюся биссектрисой угла х0у.

При n > 1 график образуется сначала между х = 0 и х = 1, несколько ниже этой прямой, а затем при х > 1, выше ее.

При п 2 и у = х 3 , при четном n график выглядит симметрично относительно оси ординат у, а при нечетном симметричен относительно начала координат.

По аналогии с графиком функции у = ах 2 графики всех степенных функций у = ах n при положительном n называют параболами n-го порядка или n степени. Так, график функции у = ах 3 называется параболой 3-го порядка или кубической параболой.

В случае если n дробное число p/q с четным знаменателем q и нечетным числителем р, то величина может иметь два знака , а у графика появляется еще одна часть внизу оси абсцисс х, причем она симметрична верхней части.

Видим график двузначной функции у = ±2х 1/2 , т. е. представленный параболой с горизонтальной осью.

Когда n = -1 получаем гиперболу. При n 1). Если n > -1 график проходит наоборот. Отрицательные значений х и дробные значения n аналогичны для положительных n.

Все графики неограниченно приближаются как к оси абсцисс х, так и к оси ординат у, не соприкасаясь с ними. Вследствие сходства с гиперболой эти графики называют гиперболами n -го порядка.

Степенная функция, её свойства и график.

Эмоциональное выгорание педагогов. Профилактика и способы преодоления

Как отличить простую усталость от профессионального выгорания?

Можно ли избежать переутомления?

Степенной называется функция, заданная формулой где , p некоторое действительное число.

I . Показатель – чётное натуральное число. Тогда степенная функция где n – натуральное число, обладает следующими свойствами:

1) Область определения функции – множество всех действительных чисел: D ( y )= (−; +).

2) Область значений функции – множество неотрицательных чисел, если :

множество неположительных чисел, если :

3) ) . Значит, функция является чётной, её график симметричен относительно оси Oy .

4) Если , то функция убывает при х (- ; 0] и возрастает при х [0; + ).

Если , то функция возрастает при х (- ; 0] и убывает при х [0; + ).

Графиком степенной функции с чётным натуральным показателем является парабола п -ой степени, симметричная относительно оси ординат, с вершиной в начале координат (в точке ), ветви которой направлены вверх, если , и вниз, если . График этой функции получается из графика функции растяжением вдоль оси Оу в а раз, если a > 1; и сжатием к оси Ох в а раз, если 0 1; и сжатием к оси Ох в а раз, если 0 1; и сжатием к оси Ох в а раз, если 0 1; и сжатием к оси Ох в а раз, если 0 1 – натуральное число, обладает следующими свойствами:

Читать еще:  Сонник большой черный ворон. К чему снятся вороны

1) Областью определения функции, исходя из определения степени с рациональным показателем, является множество неотрицательных чисел:

2) Область значений функции – множество неотрицательных чисел, если :

множество неположительных чисел, если : .

3) Функция не является ни чётной, ни нечётной, так как её область определения не содержит противоположных значений.

4) Если , функция возрастает при х ;

Если , функция убывает при х .

График степенной функции расположен в I четверти, если , и в IV четверти, если . График этой функции получается из графика функции растяжением вдоль оси Оу в а раз, если a > 1; и сжатием к оси Ох в а раз, если 0 1 – натуральное число, обладает следующими свойствами:

1) Областью определения функции, исходя из определения степени с рациональным показателем, является множество неотрицательных чисел:

2) Область значений функции – множество неотрицательных чисел, если :

множество неположительных чисел, если : .

3) Функция не является ни чётной, ни нечётной, так как её область определения не содержит противоположных значений.

4) Если , функция возрастает при х ;

Если , функция убывает при х .

График степенной функции расположен в I четверти, если , и в IV четверти, если . График этой функции получается из графика функции растяжением вдоль оси Оу в а раз, если a > 1; и сжатием к оси Ох в а раз, если 0 1 – натуральное число, обладает следующими свойствами:

1) Областью определения функции, исходя из определения степени с рациональным показателем, является множество неотрицательных чисел:

2) Область значений функции – множество неотрицательных чисел, если :

множество неположительных чисел, если : .

3) Функция не является ни чётной, ни нечётной, так как её область определения не содержит противоположных значений.

4) Если , функция убывает при х ;

Если функция возрастает при х .

График степенной функции расположен в I четверти, если , и в IV четверти, если . График этой функции получается из графика функции растяжением вдоль оси Оу в а раз, если a > 1; и сжатием к оси Ох в а раз, если 0 1 – натуральное число, обладает следующими свойствами:

1) Областью определения функции, исходя из определения степени с рациональным показателем, является множество неотрицательных чисел:

2) Область значений функции – множество неотрицательных чисел, если :

множество неположительных чисел, если : .

3) Функция не является ни чётной, ни нечётной, так как её область определения не содержит противоположных значений.

4) Если функция убывает при х ;

Если функция возрастает при х .

График степенной функции расположен в I четверти, если , и в IV четверти, если . График этой функции получается из графика функции растяжением вдоль оси Оу в а раз, если a > 1; и сжатием к оси Ох в а раз, если 0

Добавляйте авторские материалы и получите призы от Инфоурок

Степенная функция, ее свойства и графики

Формулы со степенной функцией

На области определения степенной функции y = x p имеют место следующие формулы:
; ;
;
; ;
; ;
; .

Свойства степенных функций и их графики

Далее мы рассматриваем степенную функцию
y ( x ) = x p .

Степенная функция с показателем равным нулю, p = 0

Если показатель степенной функции y = x p равен нулю, p = 0 , то степенная функция определена для всех x ≠ 0 и является постоянной, равной единице:
y = x p = x 0 = 1, x ≠ 0 .

Читать еще:  Как устроить веселый новый год дома. Как встретить новый год с семьей

Степенная функция с натуральным нечетным показателем, p = n = 1, 3, 5, .

Рассмотрим степенную функцию y = x p = x n с натуральным нечетным показателем степени n = 1, 3, 5, . . Такой показатель также можно записать в виде: n = 2k + 1 , где k = 0, 1, 2, 3, . – целое не отрицательное. Ниже представлены свойства и графики таких функций.

График степенной функции y = x n с натуральным нечетным показателем при различных значениях показателя степени n = 1, 3, 5, . .

Область определения: –∞ n ≡ (–1) 2k+1 = –1
при x = 0, y(0) = 0 n = 0
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = 1 , функция является обратной к самой себе: x = y
при n ≠ 1 , обратной функцией является корень степени n :

Степенная функция с натуральным четным показателем, p = n = 2, 4, 6, .

Рассмотрим степенную функцию y = x p = x n с натуральным четным показателем степени n = 2, 4, 6, . . Такой показатель также можно записать в виде: n = 2k , где k = 1, 2, 3, . – натуральное. Свойства и графики таких функций даны ниже.

График степенной функции y = x n с натуральным четным показателем при различных значениях показателя степени n = 2, 4, 6, . .

Область определения: –∞ n ≡ (–1) 2k = 1
при x = 0, y(0) = 0 n = 0
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = 2 , квадратный корень:
при n ≠ 2 , корень степени n :

Степенная функция с целым отрицательным показателем, p = n = -1, -2, -3, .

Рассмотрим степенную функцию y = x p = x n с целым отрицательным показателем степени n = -1, -2, -3, . . Если положить n = –k , где k = 1, 2, 3, . – натуральное, то ее можно представить в виде:

График степенной функции y = x n с целым отрицательным показателем при различных значениях показателя степени n = -1, -2, -3, . .

Нечетный показатель, n = -1, -3, -5, .

Ниже представлены свойства функции y = x n с нечетным отрицательным показателем n = -1, -3, -5, . .

Область определения: x ≠ 0
Множество значений: y ≠ 0
Четность: нечетная, y(–x) = – y(x)
Монотонность: монотонно убывает
Экстремумы: нет
Выпуклость:
при x 0 : выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак:
при x 0, y > 0
Пределы:
; ; ;
Частные значения:
при x = –1, y(–1) = (–1) n = –1
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = –1 ,
при n n с четным отрицательным показателем n = -2, -4, -6, . .

Область определения: x ≠ 0
Множество значений: y > 0
Четность: четная, y(–x) = y(x)
Монотонность:
при x 0 : монотонно убывает
Экстремумы: нет
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак: y > 0
Пределы:
; ; ;
Частные значения:
при x = –1, y(–1) = (–1) n = 1
при x = 1, y(1) = 1 n = 1
Обратная функция:
при n = –2 ,
при n p с рациональным (дробным) показателем степени , где n – целое, m > 1 – натуральное. Причем, n, m не имеют общих делителей.

Знаменатель дробного показателя – нечетный

Пусть знаменатель дробного показателя степени нечетный: m = 3, 5, 7, . . В этом случае, степенная функция x p определена как для положительных, так и для отрицательных значений аргумента x . Рассмотрим свойства таких степенных функций, когда показатель p находится в определенных пределах.

Показатель p отрицательный, p

Графики степенных функций с рациональным отрицательным показателем при различных значениях показателя степени , где m = 3, 5, 7, . – нечетное.

Нечетный числитель, n = -1, -3, -5, .

Приводим свойства степенной функции y = x p с рациональным отрицательным показателем , где n = -1, -3, -5, . – нечетное отрицательное целое, m = 3, 5, 7 . – нечетное натуральное.

Область определения: x ≠ 0
Множество значений: y ≠ 0
Четность: нечетная, y(–x) = – y(x)
Монотонность: монотонно убывает
Экстремумы: нет
Выпуклость:
при x 0 : выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак:
при x 0, y > 0
Пределы:
; ; ;
Частные значения:
при x = –1, y(–1) = (–1) n = –1
при x = 1, y(1) = 1 n = 1
Обратная функция:

Читать еще:  Беременные девочки в 12 13 лет. Вероника Иванова из Якутии
Четный числитель, n = -2, -4, -6, .

Свойства степенной функции y = x p с рациональным отрицательным показателем , где n = -2, -4, -6, . – четное отрицательное целое, m = 3, 5, 7 . – нечетное натуральное.

Область определения: x ≠ 0
Множество значений: y > 0
Четность: четная, y(–x) = y(x)
Монотонность:
при x 0 : монотонно убывает
Экстремумы: нет
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Знак: y > 0
Пределы:
; ; ;
Частные значения:
при x = –1, y(–1) = (–1) n = 1
при x = 1, y(1) = 1 n = 1
Обратная функция:

Показатель p положительный, меньше единицы, 0

График степенной функции с рациональным показателем ( 0

Нечетный числитель, n = 1, 3, 5, .

Представлены свойства степенной функции y = x p с рациональным показателем , находящимся в пределах 0 0 : выпукла вверх
Точки перегибов: x = 0, y = 0
Точки пересечения с осями координат: x = 0, y = 0
Знак:
при x 0, y > 0
Пределы:
;
Частные значения:
при x = –1, y(–1) = –1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Четный числитель, n = 2, 4, 6, .

Представлены свойства степенной функции y = x p с рациональным показателем , находящимся в пределах 0 0 : монотонно возрастает
Экстремумы: минимум при x = 0, y = 0
Выпуклость: выпукла вверх при x ≠ 0
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Знак: при x ≠ 0, y > 0
Пределы:
;
Частные значения:
при x = –1, y(–1) = 1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Показатель p больше единицы, p > 1

График степенной функции с рациональным показателем ( p > 1 ) при различных значениях показателя степени , где m = 3, 5, 7, . – нечетное.

Нечетный числитель, n = 5, 7, 9, .

Свойства степенной функции y = x p с рациональным показателем, большим единицы: 1″ style=”width:95px;height:36px;vertical-align:-20px;background-position: -346px -53px;”> . Где n = 5, 7, 9, . – нечетное натуральное, m = 3, 5, 7 . – нечетное натуральное.

Область определения: –∞ p с рациональным показателем, большим единицы: 1″ style=”width:95px;height:36px;vertical-align:-20px;background-position: -346px -53px;”> . Где n = 4, 6, 8, . – четное натуральное, m = 3, 5, 7 . – нечетное натуральное.

Область определения: –∞ 0 монотонно возрастает
Экстремумы: минимум при x = 0, y = 0
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
;
Частные значения:
при x = –1, y(–1) = 1
при x = 0, y(0) = 0
при x = 1, y(1) = 1
Обратная функция:

Знаменатель дробного показателя – четный

Пусть знаменатель дробного показателя степени четный: m = 2, 4, 6, . . В этом случае, степенная функция x p не определена для отрицательных значений аргумента. Ее свойства совпадают со свойствами степенной функции с иррациональным показателем (см. следующий раздел).

Степенная функция с иррациональным показателем

Рассмотрим степенную функцию y = x p с иррациональным показателем степени p . Свойства таких функций отличаются от рассмотренных выше тем, что они не определены для отрицательных значений аргумента x . Для положительных значений аргумента, свойства зависят только от величины показателя степени p и не зависят от того, является ли p целым, рациональным или иррациональным.

Графики степенной функции y = x p при различных значениях показателя p .

Степенная функция с отрицательным показателем p 0
Множество значений: y > 0
Монотонность: монотонно убывает
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: нет
Пределы: ;
Частное значение: При x = 1, y(1) = 1 p = 1

Степенная функция с положительным показателем p > 0

Показатель меньше единицы 0 p = 0 .
При x = 1, y(1) = 1 p = 1
Показатель больше единицы p > 1

Область определения: x ≥ 0
Множество значений: y ≥ 0
Монотонность: монотонно возрастает
Выпуклость: выпукла вниз
Точки перегибов: нет
Точки пересечения с осями координат: x = 0, y = 0
Пределы:
Частные значения: При x = 0, y(0) = 0 p = 0 .
При x = 1, y(1) = 1 p = 1

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов . Опубликовано: 12-08-2014 Изменено: 14-12-2018

Источники:

http://www.calc.ru/Stepennaya-Funktsiya.html

http://infourok.ru/stepennaya-funkciya-eyo-svoystva-i-grafik-3373126.html

http://1cov-edu.ru/mat_analiz/funktsii/stepennaya/grafiki/

Ссылка на основную публикацию
Статьи на тему: