Скалярное произведение вектора самого на себя равно. Введение

Скалярное произведение вектора самого на себя равно. Введение

В. Г. Автор. Векторная и тензорная алгебра для будущих физиков и техников

.Геометрическое определение вектора

.Алгебраические операции над направленными отрезками

..Сложение направленных отрезков

..Умножение направленных отрезков на число

..Параллельное проектирование вектора в пространстве

. Проекция точки на плоскость

. Проекция вектора на плоскость

..Ортогональная проекция вектора в пространстве

. Ортогональная проекция вектора на плоскость

. Ортогональная проекция вектора на прямую и направленную ось

..Векторы в трехмерном геометрическом пространстве

..Линейная зависимость векторов и размерность пространства

..Различные формы записи векторов

..Линейные операции над векторами в координатной форме

..Скалярное умножение векторов

. Свойства скалярного умножения

. Скалярное умножение в декартовых координатах

..Некоторые примеры использования скалярного умножения

..Площадь параллелограмма, построенного на векторах

..Задачи на применение определителей

..Определитель третьего порядка и его свойства

..Векторное умножение векторов базиса декартовой системы координат

.Ковариантные и контравариантные координаты вектора

..Индексная форма записи для выражений с определителями

..Свойства символов Веблена

..Операция векторного умножения в произвольных косоугольных координатах

.Линейный оператор и его матрица

.Доказательство теоремы об определителе

.Общие определения алгебраических операций с тензорами

.Примеры на применение тензоров в физике

..Задачи на тождественные преобразования

..Скалярное умножение векторов

Впервые слово «скаляр» ввел в математику Виет, но современное значение ему придал Гамильтон (1843 г.), назвав скалярной величину отличную от векторной. Скалярная величина – это величина, которая может, в отличие от векторной, быть задана одним числовым значением. Проще говоря, скаляр – это число. По смыслу названия, при скалярном умножении векторов должно получаться число.

Определение скалярного произведения векторов (22)

Скалярным произведением двух векторов называется число, равное произведению модулей этих векторов на косинус угла между ними.

Скалярное умножение обычно обозначается точкой: .

Введение такой странной, на первый взгляд, операции находит как физическое, так и геометрическое оправдание.

Если – постоянная сила, которая действует на точку, а – вектор перемещения этой точки, то работа A, которая совершается силой на этом перемещении, может быть вычислена как скалярное произведение силы на перемещение: .

С геометрическими приложениями скалярного умножения мы познакомимся в дальнейшем.

Вспомнив, что и , мы можем записать: .

Свойства скалярного умножения

1. Скалярное произведение двух векторов равно нулю тогда и только тогда, когда векторы взаимно ортогональны.

Пусть векторы и не равны нулю. Тогда из равенства нулю скалярного произведения следует, что , а это и означает, что .

Если же хотя бы один из векторов нулевой, то . С другой стороны, для нулевого вектора понятие направления не имеет смысла. Но раз смысла нет, то любое соглашение не погрешит против правды. Мы можем принять, что нулевой вектор параллелен любому другому, если захотим, или, что он ортогонален к любому направлению, что мы и сделаем. Но если нулевой вектор ортогонален к любому другому, в том числе и нулевому же, то и этот случай не является исключением.

2. Скалярное умножение векторов коммутативно (перестановочно).

– это сразу следует из определения.

3. Скалярное умножение ассоциативно по отношению к числовому множителю.

так же непосредственно следует из определения.

4. Скалярное умножение дистрибутивно (распределительно) относительно сложения векторов.

.

Данное свойство, несмотря на привычный вид, не является очевидным.

Рис. 17

В самом деле (рис. 17), ,

а . Глядя на рис. 17, трудно предположить, что эти два выражения равны, однако это так.

Для доказательства мы используем свойства проекций.

.

Можно это свойство доказать и непосредственно вычисляя соответствующие длины и углы, но этот путь значительно дольше.

Скалярное умножение в декартовых координатах

Общее выражение для скалярного произведения в произвольных координатах значительно сложнее, и мы займемся им позже.

Читать еще:  Разница между морем и океаном. Чем отличается море от океана

Для начала найдем результат скалярного умножения базисных векторов декартовой системы координат.

и аналогично .

и аналогично .

Скалярное произведение векторов: свойства, примеры вычисления, физический смысл

Скалярное произведение векторов называют число, равное произведению дин этих векторов на косинус угла между ними.

Обозначение произведения векторов a → и b → имеет вид a → , b → . Преобразуем в формулу:

a → , b → = a → · b → · cos a → , b → ^ . a → и b → обозначают длины векторов, a → , b → ^ — обозначение угла между заданными векторами. Если хоть один вектор нулевой, то есть имеет значение 0, то и результат будет равен нулю, a → , b → = 0

При умножении вектора самого на себя, получим квадрат его дины:

a → , b → = a → · b → · cos a → , a → ^ = a → 2 · cos 0 = a → 2

Скалярное умножение вектора самого на себя называют скалярным квадратом.

Вычисляется по формуле:

a → , b → = a → · b → · cos a → , b → ^ .

Запись a → , b → = a → · b → · cos a → , b → ^ = a → · n p a → b → = b → · n p b → a → показывает, что n p b → a → — это числовая проекция a → на b → , n p a → a → — проекция b → на a → соостветсвенно.

Сформулируем определение произведения для двух векторов:

Скалярное произведение двух векторов a → на b → называют произведение длины вектора a → на проекцию b → на направление a → или произведение длины b → на проекцию a → соответственно.

Скалярное произведение в координатах

Вычисление скалярного произведения можно производить через координаты векторов в заданной плоскости или в пространстве.

Скаларное произведение двух векторов на плоскости, в трехмерном простарнстве называют сумму координат заданных векторов a → и b → .

При вычислении на плоскости скаларного произведения заданных векторов a → = ( a x , a y ) , b → = ( b x , b y ) в декартовой системе используют:

a → , b → = a x · b x + a y · b y ,

для трехмерного пространства применимо выражение:

a → , b → = a x · b x + a y · b y + a z · b z .

Фактически это является третьим определением скалярного произведения.

Для доказательства используем a → , b → = a → · b → · cos a → , b → ^ = a x · b x + a y · b y для векторов a → = ( a x , a y ) , b → = ( b x , b y ) на декартовой системе.

Следует отложить векторы

O A → = a → = a x , a y и O B → = b → = b x , b y .

Тогда длина вектора A B → будет равна A B → = O B → — O A → = b → — a → = ( b x — a x , b y — a y ) .

Рассмотрим треугольник O A B .

A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) верно , исходя из теоремы косинусов.

По условию видно, что O A = a → , O B = b → , A B = b → — a → , ∠ A O B = a → , b → ^ , значит, формулу нахождения угла между векторами запишем иначе

b → — a → 2 = a → 2 + b → 2 — 2 · a → · b → · cos ( a → , b → ^ ) .

Тогда из первого определения следует, что b → — a → 2 = a → 2 + b → 2 — 2 · ( a → , b → ) , значит ( a → , b → ) = 1 2 · ( a → 2 + b → 2 — b → — a → 2 ) .

Применив формулу вычисления длины векторов, получим:
a → , b → = 1 2 · ( ( a 2 x + a y 2 ) 2 + ( b 2 x + b y 2 ) 2 — ( ( b x — a x ) 2 + ( b y — a y ) 2 ) 2 ) = = 1 2 · ( a 2 x + a 2 y + b 2 x + b 2 y — ( b x — a x ) 2 — ( b y — a y ) 2 ) = = a x · b x + a y · b y

( a → , b → ) = a → · b → · cos ( a → , b → ^ ) = = a x · b x + a y · b y + a z · b z

– соответственно для векторов трехмерного пространства.

Скалярное произведение векторов с координатами говорит о том, что скалярный квадрат вектора равен сумме квадратов его координат в пространстве и на плоскости соответственно. a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) и ( a → , a → ) = a x 2 + a y 2 .

Скалярное произведение и его свойства

Существуют свойства скалярного произведения, которые применимы для a → , b → и c → :

  1. коммутативность ( a → , b → ) = ( b → , a → ) ;
  2. дистрибутивность ( a → + b → , c → ) = ( a → , c → ) + ( b → , c → ) , ( a → + b → , c → ) = ( a → , b → ) + ( a → , c → ) ;
  3. сочетательное свойство ( λ · a → , b → ) = λ · ( a → , b → ) , ( a → , λ · b → ) = λ · ( a → , b → ) , λ — любое число;
  4. скалярный квадрат всегда больше нуля ( a → , a → ) ≥ 0 , где ( a → , a → ) = 0 в том случае, когда a → нулевой.

Пример 1

Свойства объяснимы благодаря определению скалярного произведения на плоскости и свойствам при сложении и умножении действительных чисел.

Доказать свойство коммутативности ( a → , b → ) = ( b → , a → ) . Из определения имеем, что ( a → , b → ) = a y · b y + a y · b y и ( b → , a → ) = b x · a x + b y · a y .

По свойству коммутативности равенства a x · b x = b x · a x и a y · b y = b y · a y верны, значит a x · b x + a y · b y = b x · a x + b y · a y .

Отсюда следует, что ( a → , b → ) = ( b → , a → ) . Что и требовалось доказать.

Читать еще:  Знаменитые вулканы исландии. Вулкан Эйяфьядлайёкюдль, Исландия

Дистрибутивность справедлива для любых чисел:

( a ( 1 ) → + a ( 2 ) → + . . . + a ( n ) → , b → ) = ( a ( 1 ) → , b → ) + ( a ( 2 ) → , b → ) + . . . + ( a ( n ) → , b → )

и ( a → , b ( 1 ) → + b ( 2 ) → + . . . + b ( n ) → ) = ( a → , b ( 1 ) → ) + ( a → , b ( 2 ) → ) + . . . + ( a → , b → ( n ) ) ,

( a ( 1 ) → + a ( 2 ) → + . . . + a ( n ) → , b ( 1 ) → + b ( 2 ) → + . . . + b ( m ) → ) = = ( a ( 1 ) → , b ( 1 ) → ) + ( a ( 1 ) → , b ( 2 ) → ) + . . . + ( a ( 1 ) → , b ( m ) → ) + + ( a ( 2 ) → , b ( 1 ) → ) + ( a ( 2 ) → , b ( 2 ) → ) + . . . + ( a ( 2 ) → , b ( m ) → ) + . . . + + ( a ( n ) → , b ( 1 ) → ) + ( a ( n ) → , b ( 2 ) → ) + . . . + ( a ( n ) → , b ( m ) → )

Скалярное произведение с примерами и решениями

Любая задача такого плана решается с применением свойств и формул, касающихся скалярного произведения:

  1. ( a → , b → ) = a → · b → · cos ( a → , b → ^ ) ;
  2. ( a → , b → ) = a → · n p a → b → = b → · n p b → a → ;
  3. ( a → , b → ) = a x · b x + a y · b y или ( a → , b → ) = a x · b x + a y · b y + a z · b z ;
  4. ( a → , a → ) = a → 2 .

Рассмотрим некоторые примеры решения.

Длина a → равна 3, длина b → равна 7. Найти скалярное произведение, если угол имеет 60 градусов.

По условию имеем все данные, поэтому вычисляем по формуле:

( a → , b → ) = a → · b → · cos ( a → , b → ^ ) = 3 · 7 · cos 60 ° = 3 · 7 · 1 2 = 21 2

Ответ: ( a → , b → ) = 21 2 .

Заданны векторы a → = ( 1 , — 1 , 2 — 3 ) , b → = ( 0 , 2 , 2 + 3 ) . Чему равно скалярной произведение.

В данном примере рассматривается формула вычисления по координатам, так как они заданы в условии задачи:

( a → , b → ) = a x · b x + a y · b y + a z · b z = = 1 · 0 + ( — 1 ) · 2 + ( 2 + 3 ) · ( 2 + 3 ) = = 0 — 2 + ( 2 — 9 ) = — 9

Ответ: ( a → , b → ) = — 9

Найти скалярное произведение A B → и A C → . На координатной плоскости заданы точки A ( 1 , — 3 ) , B ( 5 , 4 ) , C ( 1 , 1 ) .

Для начала вычисляются координаты векторов, так как по условию даны координаты точек:

A B → = ( 5 — 1 , 4 — ( — 3 ) ) = ( 4 , 7 ) A C → = ( 1 — 1 , 1 — ( — 3 ) ) = ( 0 , 4 )

Подставив в формулу с использованием координат, получим:

( A B → , A C → ) = 4 · 0 + 7 · 4 = 0 + 28 = 28 .

Ответ: ( A B → , A C → ) = 28 .

Заданы векторы a → = 7 · m → + 3 · n → и b → = 5 · m → + 8 · n → , найти их произведение. m → равен 3 и n → равен 2 единицам, они перпендикулярные.

( a → , b → ) = ( 7 · m → + 3 · n → , 5 · m → + 8 · n → ) . Применив свойство дистрибутивности, получим:

( 7 · m → + 3 · n → , 5 · m → + 8 · n → ) = = ( 7 · m → , 5 · m → ) + ( 7 · m → , 8 · n → ) + ( 3 · n → , 5 · m → ) + ( 3 · n → , 8 · n → )

Выносим коэффициент за знак произведения и получим:

( 7 · m → , 5 · m → ) + ( 7 · m → , 8 · n → ) + ( 3 · n → , 5 · m → ) + ( 3 · n → , 8 · n → ) = = 7 · 5 · ( m → , m → ) + 7 · 8 · ( m → , n → ) + 3 · 5 · ( n → , m → ) + 3 · 8 · ( n → , n → ) = = 35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( n → , m → ) + 24 · ( n → , n → )

По свойству коммутативности преобразуем:

35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( n → , m → ) + 24 · ( n → , n → ) = = 35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( m → , n → ) + 24 · ( n → , n → ) = = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → )

В итоге получим:

( a → , b → ) = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → ) .

Теперь применим формулу для скалярного произведения с заданным по условию углом:

( a → , b → ) = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → ) = = 35 · m → 2 + 71 · m → · n → · cos ( m → , n → ^ ) + 24 · n → 2 = = 35 · 3 2 + 71 · 3 · 2 · cos π 2 + 24 · 2 2 = 411 .

Ответ: ( a → , b → ) = 411

Если имеется числовая проекция.

Найти скалярное произведение a → и b → . Вектор a → имеет координаты a → = ( 9 , 3 , — 3 ) , проекция b → с координатами ( — 3 , — 1 , 1 ) .

По условию векторы a → и проекция b → противоположно направленные, потому что a → = — 1 3 · n p a → b → → , значит проекция b → соответствует длине n p a → b → → , при чем со знаком «-»:

n p a → b → → = — n p a → b → → = — ( — 3 ) 2 + ( — 1 ) 2 + 1 2 = — 11 ,

Подставив в формулу, получим выражение:

( a → , b → ) = a → · n p a → b → → = 9 2 + 3 2 + ( — 3 ) 2 · ( — 11 ) = — 33 .

Ответ: ( a → , b → ) = — 33 .

Задачи при известном скалярном произведении, где необходимо отыскать длину вектора или числовую проекцию.

Какое значение должна принять λ при заданном скалярном произведении a → = ( 1 , 0 , λ + 1 ) и b → = ( λ , 1 , λ ) будет равным -1.

Читать еще:  Имя мира православное. Известные люди с именем Мирра

Из формулы видно, что необходимо найти сумму произведений координат:

( a → , b → ) = 1 · λ + 0 · 1 + ( λ + 1 ) · λ = λ 2 + 2 · λ .

В дано имеем ( a → , b → ) = — 1 .

Чтобы найти λ , вычисляем уравнение:

λ 2 + 2 · λ = — 1 , отсюда λ = — 1 .

Физический смысл скалярного произведения

Механика рассматривает приложение скалярного произведения.

При работе А с постоянной силой F → перемещаемое тело из точки M в N можно найти произведение длин векторов F → и M N → с косинусом угла между ними, значит работа равна произведению векторов силы и перемещения:

Перемещение материальной точки на 3 метра под действием силы равной 5 ньтонов направлено под углом 45 градусов относительно оси. Найти A .

Так как работа – это произведение вектора силы на перемещение, значит, исходя из условия F → = 5 , S → = 3 , ( F → , S → ^ ) = 45 ° , получим A = ( F → , S → ) = F → · S → · cos ( F → , S → ^ ) = 5 · 3 · cos ( 45 ° ) = 15 2 2 .

Ответ: A = 15 2 2 .

Материальная точка, перемещаясь из M ( 2 , — 1 , — 3 ) в N ( 5 , 3 λ — 2 , 4 ) под силой F → = ( 3 , 1 , 2 ) , совершила работа равную 13 Дж. Вычислить длину перемещения.

При заданных координатах вектора M N → имеем M N → = ( 5 — 2 , 3 λ — 2 — ( — 1 ) , 4 — ( — 3 ) ) = ( 3 , 3 λ — 1 , 7 ) .

По формуле нахождения работы с векторами F → = ( 3 , 1 , 2 ) и M N → = ( 3 , 3 λ — 1 , 7 ) получим A = ( F ⇒ , M N → ) = 3 · 3 + 1 · ( 3 λ — 1 ) + 2 · 7 = 22 + 3 λ .

По условию дано, что A = 13 Д ж , значит 22 + 3 λ = 13 . Отсюда следует λ = — 3 , значит и M N → = ( 3 , 3 λ — 1 , 7 ) = ( 3 , — 10 , 7 ) .

Чтобы найти длину перемещения M N → , применим формулу и подставим значения:

Вектор. Скалярное произведение векторов. Угол между векторами.

Скалярным произведением (или внутренним произведением) 2 векторов есть операция с двумя

векторами, итогом чего является число (скаляр), которое не зависит от системы координат и которое

характеризует длины векторов-сомножителей и угол между векторами.

Также скалярным произведением двух векторов называется число, которое

равно произведению модулей 2 векторов на косинус угла между векторами.

Скалярное произведение векторов формула:

Этой операции соответствует умножение длины вектора x на проекцию вектора y на вектор x. Эта

операция зачастую рассматривается как коммутативная и линейная по каждому из сомножителей.

Скалярное произведение векторов ,, обозначается так: (порядок записи сомножителей не имеет

значения, т.е. ).

Еще используются такие обозначения: , , .

В основном имеется ввиду, что скалярное произведение определено положительно, т.е.

при каждом . Если этого не иметь ввиду, то произведение зовется индефинитным

(неопределенным).

Если хотя бы один из 2 векторов или равен нулевому вектору (равен нулю), то .

Свойства скалярного произведения векторов.

1. — симметричность.

2. обозначается и зовется скалярный квадрат.

3. Если , то

4. Если и и и , то . Обратное утверждение тоже соответствует

5.

6.

7.

Если же векторы и заданы своими координатами: , , то: скалярное

произведение векторов, формула:

Формула для определения длины вектора:

Длина (модуль) вектора, с известными координатами, равен квадратному корню из суммы квадратов

Длина вектора , заданного своими координатами, равна:

Как определить угол между 2 векторами:

Как найти угол между двумя векторами , , формула:

Ежели угол меж двумя векторами острый, то их скалярное произведение имеет положительный знак; если

же угол между двумя векторами тупой, то их скалярное произведение имеет отрицательный знак.

Скалярное произведение двух ненулевых векторов равно нулю, тогда и только тогда, когда эти векторы

ортогональны.

Альтернативное определение скалярного произведения векторов (вычисление скалярного

произведения двух векторов, заданных своими координатами).

Вычислить координаты вектора, если заданы координаты его начала и его конца очень просто. Давайте

рассмотрим этот вопрос:

Пусть есть вектор AB, точка А – это начало вектора, а В — конец, и координаты этих точек приведены ниже:

Исходя из этого, координаты вектора АВ:

Точно так же и в двухмерном пространстве – разница в отсутствии третьих координат.

Итак, предположим, даны два вектора, которые заданы набором координат своих точек:

а) В двухмерном пространстве (плоскость):

Значит, скалярное произведение этих векторов вычислим по формуле:

б) В трехмерном пространстве:

Как и в двухмерном случае, скалярное произведение двух векторов вычисляем по формуле:

Источники:

http://rdt45m.narod.ru/tenzor_html/vector2_3.htm

http://zaochnik.com/spravochnik/matematika/vektory/skaljarnoe-proizvedenie-vektorov/

http://www.calc.ru/Vektor-Skalyarnoye-Proizvedeniye-Vektorov-Ugol-Mezhdu-Vektor.html

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector