Методы распознавания образов. Пару слов о распознавании образов

Пару слов о распознавании образов. Обзор существующих методов распознавания образов

В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа независимых объектов с отнесением их к тому или другому классу. По итогу обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и различными — на все другие. Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему.

Прежде чем начать анализ какого-либо объекта, нужно получить о нем определенную, каким-либо способом упорядоченную, точную информацию. Такая информация представляет собой совокупность свойств объектов, их отображение на множестве воспринимающих органов распознающей системы.

Но каждый объект наблюдения может воздействовать по-разному, в зависимости от условий восприятия. Кроме того, объекты одного и того же образа могут сильно отличаться друг от друга.

Каждое отображение какого-либо объекта на воспринимающие органы распознающей системы, независимо от его положения относительно этих органов, принято называть изображением объекта, а множества таких изображений, объединенные какими-либо общими свойствами, представляют собой образы. При удачном выборе исходного описания (пространства признаков) задача распознавания может оказаться достаточно легкой и, наоборот, неудачно выбранное может привести к очень сложной дальнейшей переработке информации, либо вообще к отсутствию решения.

Распознавание объектов, сигналов, ситуаций, явлений — самая часто встречающаяся задача, которую человеку необходимо решать ежесекундно. Для этого используются огромные ресурсы мозга, который оценивается таким показателем как число нейронов, равное 10 10 .

Также, распознавание постоянно встречается в технике. Вычисления в сетях формальных нейронов, во многом напоминают обработку информации мозгом. В последнее десятилетие нейрокомпьютинг приобрел чрезвычайную популярность и успел превратиться в инженерную дисциплину, связанную с производством коммерческих продуктов. В большом объеме ведутся работы по созданию элементной базы для нейровычислений.

Основной их характерной чертой является способность решать неформализованные проблемы, для которых в силу тех или иных причин не предполагается алгоритмов решения. Нейрокомпьютеры предлагают относительно простую технологию получения алгоритмов путем обучения. В этом их основное преимущество. Поэтому нейрокомпьютинг оказывается актуальным именно сейчас — в период расцвета мультимедиа, когда глобальное развитие требует разработки новых технологий, тесно связанных с распознаванием образов.

Одной из основных проблем развития и применения искусственного интеллекта остаётся проблема распознавания звуковых и визуальных образов. Все остальные технологии уже готовы к тому, чтобы найти своё применение в медицине, биологии, системах безопасности. В медицине распознавание образов помогает врачам ставить более точные диагнозы, на заводах оно используется для прогноза брака в партиях товаров. Системы биометрической идентификации личности в качестве своего алгоритмического ядра так же основаны на результатах распознавания. Дальнейшее развитие и проектирование компьютеров, способных к более непосредственному общению с человеком на естественных для людей языках и посредством речи, нерешаемы без распознавания. Здесь уже встает вопрос о развитии робототехники, искусственных систем управления, содержащих в качестве жизненно важных подсистем системы распознавания.

Давно хотел написать общую статью, содержащую в себе самые основы Image Recognition, некий гайд по базовым методам, рассказывающий, когда их применять, какие задачи они решают, что возможно сделать вечером на коленке, а о чём лучше и не думать, не имея команды человек в 20.

Какие-то статьи по Optical Recognition я пишу давненько, так что пару раз в месяц мне пишут различные люди с вопросами по этой тематике. Иногда создаётся ощущение, что живёшь с ними в разных мирах. С одной стороны понимаешь, что человек скорее всего профессионал в смежной теме, но в методах оптического распознавания знает очень мало. И самое обидное, что он пытается применить метод из близрасположенной области знаний, который логичен, но в Image Recognition полностью не работает, но не понимает этого и сильно обижается, если ему начать рассказывать что-нибудь с самых основ. А учитывая, что рассказывать с основ — много времени, которого часто нет, становится всё ещё печальнее.

Эта статья задумана для того, чтобы человек, который никогда не занимался методами распознавания изображений, смог в течении 10-15 минут создать у себя в голове некую базовую картину мира, соответствующую тематике, и понять в какую сторону ему копать. Многие методы, которые тут описаны, применимы к радиолокации и аудио-обработке.
Начну с пары принципов, которые мы всегда начинаем рассказывать потенциальному заказчику, или человеку, который хочет начать заниматься Optical Recognition:

  • При решении задачи всегда идти от простейшего. Гораздо проще повесить на персону метку оранжевого цвета, чем следить за человеком, выделяя его каскадами. Гораздо проще взять камеру с большим разрешением, чем разрабатывать сверхразрешающий алгоритм.
  • Строгая постановка задачи в методах оптического распознавания на порядки важнее, чем в задачах системного программирования: одно лишнее слово в ТЗ может добавить 50% работы.
  • В задачах распознавания нет универсальных решений. Нельзя сделать алгоритм, который будет просто «распознавать любую надпись». Табличка на улице и лист текста — это принципиально разные объекты. Наверное, можно сделать общий алгоритм( хороший пример от гугла), но это будет требовать огромного труда большой команды и состоять из десятков различных подпрограмм.
  • OpenCV — это библия, в которой есть множество методов, и с помощью которой можно решить 50% от объёма почти любой задачи, но OpenCV — это лишь малая часть того, что в реальности можно сделать. В одном исследовании в выводах было написано: «Задача не решается методами OpenCV, следовательно, она неразрешима». Старайтесь избегать такого, не лениться и трезво оценивать текущую задачу каждый раз с нуля, не используя OpenCV-шаблоны.
Читать еще:  Какая судьба у нареченной именем Елена? Значение женского имени елена.

Очень сложно давать какой-то универсальный совет, или рассказать как создать какую-то структуру, вокруг которой можно строить решение произвольных задач компьютерного зрения. Цель этой статьи в структуризации того, что можно использовать. Я попробую разбить существующие методы на три группы. Первая группа это предварительная фильтрация и подготовка изображения. Вторая группа это логическая обработка результатов фильтрации. Третья группа это алгоритмы принятия решений на основе логической обработки. Границы между группами очень условные. Для решения задачи далеко не всегда нужно применять методы из всех групп, бывает достаточно двух, а иногда даже одного.

Список приведённых тут методов не полон. Предлагаю в комментариях добавлять критические методы, которые я не написал и приписывать каждому по 2-3 сопроводительных слова.

Часть 1. Фильтрация

Бинаризация по порогу, выбор области гистограммы

Самое просто преобразование — это бинаризация изображения по порогу. Для RGB изображения и изображения в градациях серого порогом является значение цвета. Встречаются идеальные задачи, в которых такого преобразования достаточно. Предположим, нужно автоматически выделить предметы на белом листе бумаги:


Выбор порога, по которому происходит бинаризация, во многом определяет процесс самой бинаризации. В данном случае, изображение было бинаризовано по среднему цвету. Обычно бинаризация осуществляется с помощью алгоритма, который адаптивно выбирает порог. Таким алгоритмом может быть выбор матожидания или моды . А можно выбрать наибольший пик гистограммы.

Бинаризация может дать очень интересные результаты при работе с гистограммами, в том числе в ситуации, если мы рассматриваем изображение не в RGB, а в HSV . Например, сегментировать интересующие цвета. На этом принципе можно построить как детектор метки так и детектор кожи человека.

Классическая фильтрация: Фурье, ФНЧ, ФВЧ

Классические методы фильтрации из радиолокации и обработки сигналов можно с успехом применять во множестве задач Pattern Recognition. Традиционным методом в радиолокации, который почти не используется в изображениях в чистом виде, является преобразование Фурье (конкретнее — БПФ). Одно из немногих исключение, при которых используется одномерное преобразование Фурье, — компрессия изображений . Для анализа изображений одномерного преобразования обычно не хватает, нужно использовать куда более ресурсоёмкое двумерное преобразование .

Мало кто его в действительности рассчитывает, обычно, куда быстрее и проще использовать свёртку интересующей области с уже готовым фильтром, заточенным на высокие (ФВЧ) или низкие(ФНЧ) частоты. Такой метод, конечно, не позволяет сделать анализ спектра, но в конкретной задаче видеообработки обычно нужен не анализ, а результат.


Самые простые примеры фильтров, реализующих подчёркивание низких частот (фильтр Гаусса) и высоких частот (Фильтр Габора).
Для каждой точки изображения выбирается окно и перемножается с фильтром того же размера. Результатом такой свёртки является новое значение точки. При реализации ФНЧ и ФВЧ получаются изображения такого типа:

Вейвлеты
Корреляция
Фильтрации функций

Интересным классом фильтров является фильтрация функций. Это чисто математические фильтры, которые позволяют обнаружить простую математическую функцию на изображении (прямую, параболу, круг). Строится аккумулирующее изображение, в котором для каждой точки исходного изображения отрисовывается множество функций, её порождающих. Наиболее классическим преобразованием является преобразование Хафа для прямых. В этом преобразовании для каждой точки (x;y) отрисовывается множество точек (a;b) прямой y=ax+b, для которых верно равенство. Получаются красивые картинки:


(первый плюсег тому, кто первый найдёт подвох в картинке и таком определении и объяснит его, второй плюсег тому, кто первый скажет что тут изображено)
Преобразование Хафа позволяет находить любые параметризуемые функции. Например окружности . Есть модифицированное преобразование, которое позволяет искать любые . Это преобразование ужасно любят математики. Но вот при обработке изображений, оно, к сожалению, работает далеко не всегда. Очень медленная скорость работы, очень высокая чувствительность к качеству бинаризации. Даже в идеальных ситуациях я предпочитал обходиться другими методами.
Аналогом преобразования Хафа для прямых является преобразование Радона . Оно вычисляется через БПФ, что даёт выигрыш производительности в ситуации, когда точек очень много. К тому же его возможно применять к не бинаризованному изображению.

Фильтрации контуров

Отдельный класс фильтров — фильтрация границ и контуров . Контуры очень полезны, когда мы хотим перейти от работы с изображением к работе с объектами на этом изображении. Когда объект достаточно сложный, но хорошо выделяемый, то зачастую единственным способом работы с ним является выделение его контуров. Существует целый ряд алгоритмов, решающих задачу фильтрации контуров:

Чаще всего используется именно Кэнни, который хорошо работает и реализация которого есть в OpenCV (Собель там тоже есть, но он хуже ищёт контуры).

Читать еще:  Социальное поведение концепции социального поведения. Поведение социальное

Теория распознавания образов. Обзор существующих методов распознавания образов

Давно хотел написать общую статью, содержащую в себе самые основы Image Recognition, некий гайд по базовым методам, рассказывающий, когда их применять, какие задачи они решают, что возможно сделать вечером на коленке, а о чём лучше и не думать, не имея команды человек в 20.

Какие-то статьи по Optical Recognition я пишу давненько, так что пару раз в месяц мне пишут различные люди с вопросами по этой тематике. Иногда создаётся ощущение, что живёшь с ними в разных мирах. С одной стороны понимаешь, что человек скорее всего профессионал в смежной теме, но в методах оптического распознавания знает очень мало. И самое обидное, что он пытается применить метод из близрасположенной области знаний, который логичен, но в Image Recognition полностью не работает, но не понимает этого и сильно обижается, если ему начать рассказывать что-нибудь с самых основ. А учитывая, что рассказывать с основ — много времени, которого часто нет, становится всё ещё печальнее.

Эта статья задумана для того, чтобы человек, который никогда не занимался методами распознавания изображений, смог в течении 10-15 минут создать у себя в голове некую базовую картину мира, соответствующую тематике, и понять в какую сторону ему копать. Многие методы, которые тут описаны, применимы к радиолокации и аудио-обработке.
Начну с пары принципов, которые мы всегда начинаем рассказывать потенциальному заказчику, или человеку, который хочет начать заниматься Optical Recognition:

  • При решении задачи всегда идти от простейшего. Гораздо проще повесить на персону метку оранжевого цвета, чем следить за человеком, выделяя его каскадами. Гораздо проще взять камеру с большим разрешением, чем разрабатывать сверхразрешающий алгоритм.
  • Строгая постановка задачи в методах оптического распознавания на порядки важнее, чем в задачах системного программирования: одно лишнее слово в ТЗ может добавить 50% работы.
  • В задачах распознавания нет универсальных решений. Нельзя сделать алгоритм, который будет просто «распознавать любую надпись». Табличка на улице и лист текста — это принципиально разные объекты. Наверное, можно сделать общий алгоритм(вот хороший пример от гугла), но это будет требовать огромного труда большой команды и состоять из десятков различных подпрограмм.
  • OpenCV — это библия, в которой есть множество методов, и с помощью которой можно решить 50% от объёма почти любой задачи, но OpenCV — это лишь малая часть того, что в реальности можно сделать. В одном исследовании в выводах было написано: «Задача не решается методами OpenCV, следовательно, она неразрешима». Старайтесь избегать такого, не лениться и трезво оценивать текущую задачу каждый раз с нуля, не используя OpenCV-шаблоны.

Очень сложно давать какой-то универсальный совет, или рассказать как создать какую-то структуру, вокруг которой можно строить решение произвольных задач компьютерного зрения. Цель этой статьи в структуризации того, что можно использовать. Я попробую разбить существующие методы на три группы. Первая группа это предварительная фильтрация и подготовка изображения. Вторая группа это логическая обработка результатов фильтрации. Третья группа это алгоритмы принятия решений на основе логической обработки. Границы между группами очень условные. Для решения задачи далеко не всегда нужно применять методы из всех групп, бывает достаточно двух, а иногда даже одного.

Список приведённых тут методов не полон. Предлагаю в комментариях добавлять критические методы, которые я не написал и приписывать каждому по 2-3 сопроводительных слова.

Часть 1. Фильтрация

Бинаризация по порогу, выбор области гистограммы

Самое просто преобразование — это бинаризация изображения по порогу. Для RGB изображения и изображения в градациях серого порогом является значение цвета. Встречаются идеальные задачи, в которых такого преобразования достаточно. Предположим, нужно автоматически выделить предметы на белом листе бумаги:


Выбор порога, по которому происходит бинаризация, во многом определяет процесс самой бинаризации. В данном случае, изображение было бинаризовано по среднему цвету. Обычно бинаризация осуществляется с помощью алгоритма, который адаптивно выбирает порог. Таким алгоритмом может быть выбор матожидания или моды . А можно выбрать наибольший пик гистограммы.

Бинаризация может дать очень интересные результаты при работе с гистограммами, в том числе в ситуации, если мы рассматриваем изображение не в RGB, а в HSV . Например, сегментировать интересующие цвета. На этом принципе можно построить как детектор метки так и детектор кожи человека.

Классическая фильтрация: Фурье, ФНЧ, ФВЧ

Классические методы фильтрации из радиолокации и обработки сигналов можно с успехом применять во множестве задач Pattern Recognition. Традиционным методом в радиолокации, который почти не используется в изображениях в чистом виде, является преобразование Фурье (конкретнее — БПФ). Одно из немногих исключение, при которых используется одномерное преобразование Фурье, — компрессия изображений . Для анализа изображений одномерного преобразования обычно не хватает, нужно использовать куда более ресурсоёмкое двумерное преобразование .

Мало кто его в действительности рассчитывает, обычно, куда быстрее и проще использовать свёртку интересующей области с уже готовым фильтром, заточенным на высокие (ФВЧ) или низкие(ФНЧ) частоты. Такой метод, конечно, не позволяет сделать анализ спектра, но в конкретной задаче видеообработки обычно нужен не анализ, а результат.


Самые простые примеры фильтров, реализующих подчёркивание низких частот (фильтр Гаусса) и высоких частот (Фильтр Габора).
Для каждой точки изображения выбирается окно и перемножается с фильтром того же размера. Результатом такой свёртки является новое значение точки. При реализации ФНЧ и ФВЧ получаются изображения такого типа:

Читать еще:  Скачать Словари ABBYY Lingvo для Андроид. Оффлайн словарь на Android

Вейвлеты
Корреляция
Фильтрации функций

Интересным классом фильтров является фильтрация функций. Это чисто математические фильтры, которые позволяют обнаружить простую математическую функцию на изображении (прямую, параболу, круг). Строится аккумулирующее изображение, в котором для каждой точки исходного изображения отрисовывается множество функций, её порождающих. Наиболее классическим преобразованием является преобразование Хафа для прямых. В этом преобразовании для каждой точки (x;y) отрисовывается множество точек (a;b) прямой y=ax+b, для которых верно равенство. Получаются красивые картинки:


(первый плюсег тому, кто первый найдёт подвох в картинке и таком определении и объяснит его, второй плюсег тому, кто первый скажет что тут изображено)
Преобразование Хафа позволяет находить любые параметризуемые функции. Например окружности . Есть модифицированное преобразование, которое позволяет искать любые фигуры . Это преобразование ужасно любят математики. Но вот при обработке изображений, оно, к сожалению, работает далеко не всегда. Очень медленная скорость работы, очень высокая чувствительность к качеству бинаризации. Даже в идеальных ситуациях я предпочитал обходиться другими методами.
Аналогом преобразования Хафа для прямых является преобразование Радона . Оно вычисляется через БПФ, что даёт выигрыш производительности в ситуации, когда точек очень много. К тому же его возможно применять к не бинаризованному изображению.

Фильтрации контуров

Отдельный класс фильтров — фильтрация границ и контуров . Контуры очень полезны, когда мы хотим перейти от работы с изображением к работе с объектами на этом изображении. Когда объект достаточно сложный, но хорошо выделяемый, то зачастую единственным способом работы с ним является выделение его контуров. Существует целый ряд алгоритмов, решающих задачу фильтрации контуров:

Чаще всего используется именно Кэнни, который хорошо работает и реализация которого есть в OpenCV (Собель там тоже есть, но он хуже ищёт контуры).

Методы распознавания образов. Пару слов о распознавании образов

Одно из важных современных направлений в программном обеспечении — программы, обладающие компьютерным зрением. Данная технология позволяет анализировать информацию в изображениях и видео-файлах. Например, читать текст или обнаруживать расположение определенных объектов.

Для практического изучения данной технологии мной была поставлена задача определения кружки на фотографии. Для реализации было решено использовать android + OpenCV (http://opencv.org/). OpenCV — это библиотека компьютерного зрения с открытым исходным кодом, разработанная для С++, python, java и многих других языков. Она имеет множество функций, но нас интересует возможность обрабатывать изображения и проводить на них поиск объектов с помощью каскадного алгоритма Виолы-Джонса.

Алгоритм Виолы-Джонса — это метод обнаружения объектов на изображениях, основанный на признаках Хаара. Основные его особенности — высокая скорость работы и низкая частота ложных срабатываний. Изначально алгоритм был разработан для обнаружения лиц на изображениях, но его можно натренировать на обнаружение других объектов. Для своей работы он использует разбиения (splitting) изображения на области, оценку яркости в этих областях и отсечения областей, где классифицируемый объект однозначно не находится. Данный алгоритм реализован в openCV отдельной функцией, которой на вход требуется файл-классификатор, определяющий веса для работы алгоритма и изображение, на котором будет проводиться поиск.

Для тренировки классификатора я использовал программу Cascade-Trainer-GUI (http://amin-ahmadi.com/cascade-trainer-gui/), которая предоставляет оконный интерфейс для стандартных программ из набора OpenCV — opencv_createsamples и opencv_traincascade.

Процесс тренировки начинается с подготовки исходных данных. В качестве исходных данных выступают изображения, содержащие и не содержащие исходный объект. Изображения с объектом считаются позитивными и отправляются в папку p, а те, на которых объект отсутствует — негативными и помещаются в папку n. Стоит заметить, что позитивные изображения должны содержать только распознаваемый объект и ничего больше. Иначе придётся создать файл, который будет содержать координаты объекта на изображении.

opencv_createsamples — это программа, которая генерирует исходные файлы для opencv_traincascade. Негативы формируются по принципу нарезки: из негативной фотографии вырезается случайная область. Позитивы создаются путем помещения какого-нибудь позитивного изображения объекта на негативное, незначительных изменений яркости, поворота и перспективы

После создания этих изображений используется opencv_traincascade, которая принимает полученные образцы и на их основе определяет веса и пропускные пороги для каскадного классификатора. Веса должны быть подобраны так, чтобы сеть отвергала все негативные изображения и принимала все позитивные.

Но это только теория. На практике эти процессы осуществляет Cascade-Trainer-GUI, которому для начала работы требуется только две папки с фотографиями, одна из которых называется p, а другая n. В них хранятся позитивные и негативные образцы соответственно. Для того, чтобы натренировать сеть, мне потребовалось 47 фотографий моего объекта с разным углом камеры, углом падения света, наклоном и яркостью. После этого я удвоил данное число путем зеркального отражения. Негативных фотографий было только 42, но с помощью нарезки изображений было создано 1000 негативных образцов. Часть негативных изображений для разнообразия была взята из интернета.

Источники:

http://radiobud.ru/internet/paru-slov-o-raspoznavanii-obrazov-obzor-sushchestvuyushchih-metodov.html

http://welena.ru/uhod/teoriya-raspoznavaniya-obrazov-obzor-sushchestvuyushchih-metodov-raspoznavaniya.html

http://bytepace.com/ru/blog/character-recognition

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector