Числа переменные и их степени называют. Понятие одночлена

Определение одночлена, сопутствующие понятия, примеры.

Одним из видов выражений курса алгебры являются одночлены. В этой статье мы разберемся, какие выражения называют одночленами, скажем про их стандартный вид и приведем примеры. А после этого подробно остановимся на сопутствующих понятиях – степени и коэффициенте одночлена.

Навигация по странице.

Что такое одночлен? Определение, примеры

Первое запланированное знакомство с одночленами происходит в 7 классе средней школы. Там дается следующее определение одночлена:

Одночлены – это числа, переменные, их степени с натуральным показателем, а также всевозможные составленные из них произведения.

Озвученное определение позволяет привести примеры одночленов. Каждое из чисел 1 , 7 , 1 002 , 0 , −1 , −7 , 0,8 , 1/4 , — это одночлен. Любая переменная, к примеру, a , b , p , q , t , x , y , z – это тоже одночлены по определению. Одночленами являются и степени чисел и переменных, например, 2 3 , (−3,41) 7 , x 2 и t 115 . Но наиболее яркими представителями одночленов являются произведения чисел, переменных и их степеней: 5·x , 7·(−3)·x·y 3 ·6 , x·x·y 3 ·x·y 2 ·z и т.п. Из приведенных примеров видно, что в составе одночлена может быть как одно, так и несколько чисел, как одна, так и несколько переменных и их степеней, причем они могут повторяться.

До 7 класса в школе были изучены натуральные, целые и рациональные числа, они и фигурируют в приведенных выше примерах одночленов. Однако нужно заметить, что определение одночлена в указанной формулировке остается в силе после знакомства с действительными числами и комплексными числами. Так , 2·π·x 3 и — это тоже одночлены.

Стандартный вид одночлена

С одночленами удобно работать, когда они приведены к так называемому стандартному виду.

Стандартный вид одночлена — это такой вид одночлена, в котором он представлен как произведение числового множителя (который обычно записывают перед остальными множителями слева и называют коэффициентом одночлена) и натуральных степеней различных переменных.

Для пояснения приведем примеры нескольких одночленов стандартного вида: 5 (этот одночлен не содержит переменных), 2·a , −7·x 2 ·y 3 , , x·y (здесь коэффициент равен единице), −x 3 (здесь коэффициент равен −1 ). А вот одночлены 4·a·a 2 ·a 3 и 5·x·(−1)·3·y 2 записаны не в стандартном виде, так как первый из них содержит одинаковые переменные, а второй – несколько числовых множителей.

Отметим, что в одночленах стандартного вида принято буквенные множители записывать в алфавитном порядке. Например, одночлен b 4 ·6·a·z 2 ·c предпочтительнее записать как 6·a·b 4 ·c·z 2 . Давайте договоримся в дальнейшем везде записывать переменные в составе одночлена в алфавитном порядке. Записывать переменные не в алфавитном порядке мы будем только тогда, когда будем преследовать какую-то определенную цель.

Любой одночлен путем тождественных преобразований может быть представлен в стандартном виде. Иными словами, можно любой одночлен привести к стандартному виду.

Степень одночлена

Для одночлена существует понятие его степени. Разберемся, что это такое.

Степень одночлена стандартного вида – это сумма показателей степеней всех переменных, входящих в его запись; если в записи одночлена нет переменных, и он отличен от нуля, то его степень считается равной нулю; число нуль считается одночленом, степень которого не определена.

Читать еще:  К чему снятся деньги? Сонник Деньги, к чему снится Деньги.

Определение степени одночлена позволяет привести примеры. Степень одночлена a равна единице, так как a это есть a 1 . Степень одночлена 5 есть нуль, так как он отличен от нуля, и его запись не содержит переменных. А произведение 7·a 2 ·x·y 3 ·a 2 является одночленом восьмой степени, так как сумма показателей степеней всех переменных a , x и y равна 2+1+3+2=8 .

Кстати, степень одночлена, записанного не в стандартном виде, равна степени соответствующего одночлена стандартного вида. Для иллюстрации сказанного вычислим степень одночлена 3·x 2 ·y 3 ·x·(−2)·x 5 ·y . Этот одночлен в стандартном виде имеет вид −6·x 8 ·y 4 , его степень равна 8+4=12 . Таким образом, степень исходного одночлена равна 12 .

Коэффициент одночлена

Одночлен в стандартном виде, имеющий в своей записи хотя бы одну переменную, представляет собой произведение с единственным числовым множителем – числовым коэффициентом. Этот коэффициент называют коэффициентом одночлена. Оформим приведенные рассуждения в виде определения.

Коэффициент одночлена – это числовой множитель одночлена, записанного в стандартном виде.

Теперь можно привести примеры коэффициентов различных одночленов. Число 5 – это коэффициент одночлена 5·a 3 по определению, аналогично одночлен (−2,3)·x·y·z имеет коэффициент −2,3 .

Отдельного внимания заслуживают коэффициенты одночленов, равные 1 и −1 . Дело здесь в том, что они обычно не присутствуют в записи в явном виде. Считают, что коэффициент одночленов стандартного вида, не имеющих в своей записи числового множителя, равен единице. Например, одночлены a , x·z 3 , a·t·x и т.п. имеют коэффициент 1 , так как a можно рассматривать как 1·a , x·z 3 – как 1·x·z 3 и т.п.

Аналогично, коэффициентом одночленов, записи которых в стандартном виде не имеют числового множителя и начинаются со знака минус, считают минус единицу. К примеру, одночлены −x , −x 3 ·y·z 3 и т.п. имеют коэффициент −1 , так как −x=(−1)·x , −x 3 ·y·z 3 =(−1)·x 3 ·y·z 3 и т.п.

К слову, понятие коэффициента одночлена зачастую относят и к одночленам стандартного вида, представляющим собой числа без буквенных множителей. Коэффициентами таких одночленов-чисел считают эти числа. Так, например, коэффициент одночлена 7 считают равным 7 .

Определение одночлена: сопутствующие понятия, примеры

Одночлены являются одним из основных видов выражений, изучаемых в рамках школьного курса алгебры. В этом материале мы расскажем, что это за выражения, определим их стандартный вид и покажем примеры, а также разберемся с сопутствующими понятиями, такими как степень одночлена и его коэффициент.

Что такое одночлен

В школьных учебниках обычно дается следующее определение этого понятия:

К одночленам относятся числа, переменные, а также их степени с натуральным показателем и разные виды произведений, составленные из них.

Исходя из этого определения, мы можем привести примеры таких выражений. Так, все числа 2 , 8 , 3004 , 0 , — 4 , — 6 , 0 , 78 , 1 4 , — 4 3 7 будут относиться к одночленам. Все переменные, например, x , a , b , p , q , t , y , z тоже будут по определению одночленами. Сюда же можно отнести степени переменных и чисел, например, 6 3 , ( − 7 , 41 ) 7 , x 2 и t 15 , а также выражения вида 65 · x , 9 · ( − 7 ) · x · y 3 · 6 , x · x · y 3 · x · y 2 · z и т.д. Обратите внимание, что в состав одночлена может входить как одно число или переменная, так и несколько, причем они могут быть упомянуты несколько раз в составе одного многочлена.

Такие виды чисел, как целые, рациональные, натуральные тоже относятся к одночленам. Также сюда можно включить действительные и комплексные числа. Так, выражения вида 2 + 3 · i · x · z 4 , 2 · x , 2 · π · x 3 тоже будут одночленами.

Что такое стандартный вид одночлена и как привести выражение к нему

Для удобства работы все одночлены сначала приводят к особому виду, называемому стандартным. Сформулируем конкретно, что же это значит.

Читать еще:  Значение имени аман. Библейский Словарь к русской канонической Библии

Стандартным видом одночлена называют такой его вид, в которой он представляет из себя произведение числового множителя и натуральных степеней разных переменных. Числовой множитель, также называемый коэффициентом одночлена, обычно записывают первым с левой стороны.

Для наглядности подберем несколько одночленов стандартного вида: 6 (это одночлен без переменных), 4 · a , − 9 · x 2 · y 3 , 2 3 5 · x 7 . Сюда же можно отнести выражение x · y (здесь коэффициент будет равен 1 ), − x 3 (тут коэффициент равен — 1 ).

Теперь приведем примеры одночленов, которые нужно привести к стандартному виду: 4 · a · a 2 · a 3 (здесь нужно объединить одинаковые переменные), 5 · x · ( − 1 ) · 3 · y 2 (тут нужно объединить слева числовые множители).

Обычно в случае, когда одночлен имеет несколько переменных, записанных буквами, буквенные множители записывают в алфавитном порядке. Например, предпочтительнее запись 6 · a · b 4 · c · z 2 , чем b 4 · 6 · a · z 2 · c . Однако порядок может быть и другим, если этого требует цель вычисления.

Привести к стандартному виду можно любой одночлен. Для этого нужно выполнить все необходимые тождественные преобразования.

Понятие степени одночлена

Очень важным является сопутствующее понятие степени одночлена. Запишем определение данного понятия.

Степенью одночлена, записанного в стандартном виде, является сумма показателей степеней всех переменных, которые входят в его запись. Если ни одной переменной в нем нет, а сам одночлен отличен от 0 , то его степень будет нулевой.

Сам нуль принято считать одночленом с неопределенной степенью.

Приведем примеры степеней одночлена.

Так, одночлен a имеет степень, равную 1 , поскольку a = a 1 . Если у нас есть одночлен 7 ,то он будет иметь нулевую степень, поскольку в нем нет переменных и он отличен от 0 . А вот запись 7 · a 2 · x · y 3 · a 2 будет одночленом 8 -й степени, ведь сумма показателей всех степеней переменных, включенных в него, будет равна 8 : 2 + 1 + 3 + 2 = 8 .

Одночлен, приведенный к стандартному виду, и исходный многочлен будут иметь одинаковую степень.

Покажем, как подсчитать степень одночлена 3 · x 2 · y 3 · x · ( − 2 ) · x 5 · y . В стандартном виде его можно записать как − 6 · x 8 · y 4 . Вычисляем степень: 8 + 4 = 12 . Значит, степень исходного многочлена также равна 12 .

Понятие коэффициента одночлена

Если у нас есть одночлен, приведенный к стандартному виду, который включает в себя хотя бы одну переменную, то мы говорим о нем как о произведении с одним числовым множителем. Этот множитель называют числовым коэффициентом, или коэффициентом одночлена. Запишем определение.

Коэффициентом одночлена называют числовой множитель одночлена, приведенного к стандартному виду.

Возьмем для примера коэффициенты различных одночленов.

Так, в выражении 8 · a 3 коэффициентом будет число 8 , а в ( − 2 , 3 ) · x · y · z им будет − 2 , 3 .

Особое внимание надо уделить коэффициентам, равным единице и минус единице. Как правило, в явном виде их не указывают. Считается, что в одночлене стандартного вида, в котором нет числового множителя, коэффициент равен 1 , например, в выражениях a , x · z 3 , a · t · x , поскольку их можно рассматривать как как 1 · a , x · z 3 – как 1 · x · z 3 и т.д.

Точно так же в одночленах, в которых нет числового множителя и которые начинаются со знака минус, мы можем считать коэффициентом — 1 .

Например, такой коэффициент будет у выражений − x , − x 3 · y · z 3 , поскольку они могут быть представлены как − x = ( − 1 ) · x , − x 3 · y · z 3 = ( − 1 ) · x 3 · y · z 3 и т.д.

Если у одночлена вообще нет ни одного буквенного множителя, то говорить о коэффициенте можно и в этом случае. Коэффициентами таких одночленов-чисел будут сами эти числа. Так, например, коэффициент одночлена 9 будет равен 9 .

Числа переменные и их степени называют. Понятие одночлена

Ключевые слова конспекта: Одночлены, стандартный вид одночлена, коэффициент и степень одночлена, умножение одночленов,

Выражения 15а 2 b, 3ху • 2у, –3с 7 представляют собой произведения чисел, переменных и их степеней. Такие выражения называют одночленами. Числа, переменные и их степени также считаются одночленами. Например, выражения –11, а, а 6 — одночлены.

Читать еще:  Приснилась клубника на грядке крупная. Толкование сладких снов о клубнике

Одночлен 5а 2 b • 2аb 3 можно упростить, если воспользоваться свойствами умножения и правилом умножения степеней с одинаковыми основаниями. Тогда получим: 5а 2 b • 2аb 3 = 5 • 2а 2 • а • b • b 3 = 10а 3 b 4 .

Мы представили данный одночлен в виде произведения числового множителя, записанного на первом месте, и степеней различных переменных. Такой вид одночлена называют стандартным видом. Числа, переменные, их степени также считаются одночленами стандартного вида.

Коэффициент и степень одночлена

Любой одночлен можно преобразовать так, чтобы получился одночлен стандартного вида. Если одночлен записан в стандартном виде, то числовой множитель называют коэффициентом одночлена. Например, в одночлене –10а 2 b 4 коэффициент равен 10. Если коэффициент одночлена равен 1 или 1, то его обычно не пишут.

Степенью одночлена стандартного вида называют сумму показателей степеней входящих в него переменных. Если одночлен представляет собой число, отличное от нуля, то его степень считается равной нулю.

Например, степень одночлена 12х 2 у 3 равна 5, степень одночлена 6аb равна 2. Выражение 2,32 является одночленом нулевой степени.

Число нуль — это одночлен, степень которого не определена.

Умножение одночленов

При умножении одночленов снова получается одночлен, который обычно записывают в стандартном виде, используя для этого свойства умножения и правило умножения степеней с одинаковыми основаниями.

Пример. Умножим одночлен 12а 6 b 4 на одночлен 2а 3 b. Для этого составим произведение одночленов и преобразуем его в одночлен стандартного вида:
12а 6 b 4 • (–2а 3 b) = 12 • (–2) • (а 6 • а 3 ) • (b 4 • b) = –24а 9 b 5 .

Возведение одночлена в степень

Рассмотрим сначала правила возведения в степень произведения и степени. Преобразуем четвёртую степень произведения ab:
(ab) 4 = (ab)(ab)(ab)(ab) = (aaaa)(bbbb) = а 4 b 4 , т.е. (аb) 4 = а 4 b 4 .
Четвёртая степень произведения равна произведению четвёртых степеней множителей. Аналогичным свойством обладает любая натуральная степень произведения двух множителей.

Если а и b — произвольные числа и n — любое натуральное число, то
(аb)
n = а n b n .

Докажем это, воспользовавшись определением степени и свойствами умножения:

Доказанное свойство распространяется на произведение трёх и более множителей. Например,
(abc) n = a n b n c n ; (abcd) n = a n b n c n d n .

Отсюда следует правило:

  • чтобы возвести в степень произведение, нужно возвести в эту степень каждый множитель и результаты перемножить.

Рассмотрим теперь, как можно возвести степень в степень. Преобразуем, например, выражение (а 5 ) 4 :
(а 5 ) 4 = а 5 • а 5 • а 5 • а 5 = а 5+5+5+5 = а 20 , то есть (а 5 ) 4 = а 5-4 .

Аналогичное свойство выполняется для произвольных степеней с натуральными показателями.

Если а — произвольное число, m и n — любые натуральные числа, то
(
а m ) n = а m • n .

Из этого свойства следует правило:

  • чтобы возвести степень в степень, нужно основание оставить тем же, а показатели степеней перемножить.

Аналогично тому, как было доказано свойство степени произведения, можно доказать свойство степени дроби : (a/b) n = a n /b n , где b ≠ 0. Из этого свойства следует правило:

  • чтобы возвести в степень дробь, нужно возвести в эту степень числитель и знаменатель, первое выражение записать в числитель, а второе — в знаменатель.

Правила возведения в степень произведения и степени используются при возведении одночленов в степень.

Это конспект по математике на тему «Одночлены и действия над ними». Выберите дальнейшие действия:

Источники:

http://www.cleverstudents.ru/expressions/monomials_definition.html

http://zaochnik.com/spravochnik/matematika/vyrazhenija/opredelenie-odnochlena/

Одночлены и действия над ними

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector