Смежные углы треугольника рисунок. Н.Никитин Геометрия

Помощь по Теле2, тарифы, вопросы

Н.Никитин Геометрия. Смежные углы

Если мы продолжим сторону какого-нибудь угла за его вершину, то получим два угла (рис. 72): ∠АВС и ∠СВD, у которых одна сторона ВС общая, а две другие, АВ и ВD, составляют прямую линию.

Два угла, у которых одна сторона общая, а две другие составляют прямую линию, называются смежными углами.

Смежные углы можно получить и таким образом: если из какой-нибудь точки прямой проведём луч (не лежащий на данной прямой), то получим смежные углы.

Например, ∠АDF и ∠FDВ — углы смежные (рис. 73).

Смежные углы могут иметь самые разнообразные положения (рис. 74).

Смежные углы в сумме составляют развёрнутый угол, поэтому сумма двух смежных углов равна 180°

Отсюда прямой угол можно определить как угол, равный своему смежному углу.

Зная величину одного из смежных углов, мы можем найти величину другого смежного с ним угла.

Например, если один из смежных углов равен 54°, то второй угол будет равен:

2. Вертикальные углы.

Если мы продолжим стороны угла за его вершину, то получим вертикальные углы. На рисунке 75 углы EOF и АОС- вертикальные; углы АОЕ и СОF — также вертикальные.

Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого угла.

Пусть ∠1 = (frac<7><8>) ⋅ 90°(рис. 76). Смежный с ним ∠2 будет равен 180° — (frac<7><8>) ⋅ 90°, т. е. 1(frac<1><8>) ⋅ 90°.

Таким же образом можно вычислить, чему равны ∠3 и ∠4.

∠4 = 180° — (frac<7><8>) ⋅ 90° = 1(frac<1><8>) ⋅ 90° (рис. 77).

Мы видим, что ∠1 = ∠3 и ∠2 = ∠4.

Можно решить ещё несколько таких же задач, и каждый раз будет получаться один и тот же результат: вертикальные углы равны между собой.

Однако, чтобы убедиться в том, что вертикальные углы всегда равны между собой, недостаточно рассмотреть отдельные числовые примеры, так как выводы, сделанные на основе частных примеров, иногда могут быть и ошибочными.

Убедиться в справедливости свойства вертикальных углов необходимо путём доказательства.

Доказательство можно провести следующим образом (рис. 78):

(так как сумма смежных углов равна 180°).

(так как и левая часть этого равенства равна 180°, и правая его часть тоже равна 180°).

В это равенство входит один и тот же угол с .

Если мы от равных величин отнимем поровну, то и останется поровну. В результате получится: ∠a = ∠b , т. е. вертикальные углы равны между собой.

3. Сумма углов, имеющих общую вершину.

На чертеже 79 ∠1, ∠2, ∠3 и ∠4 расположены по одну сторону прямой и имеют общую вершину на этой прямой. В сумме эти углы составляют развёрнутый угол, т. е.

∠1 + ∠2 + ∠3 + ∠4 = 180°.

На чертеже 80 ∠1, ∠2, ∠3, ∠4 и ∠5 имеют общую вершину. В сумме эти углы составляют полный угол, т. е. ∠1 + ∠2 + ∠3 + ∠4 + ∠5 = 360°.

Как найти смежный угол?

Математика — древнейшая точная наука, которую в обязательном порядке изучают в школах, колледжах, институтах и университетах. Однако, базовые знания всегда закладываются еще в школе. Порой, ребенку задают достаточно сложные задания, а родители не в силах помочь, потому что просто забыли некоторые вещи из математики. Например, как найти смежный угол по величине основного угла и т.п. Задача проста, но может вызвать затруднения при решении из-за незнания того, какие углы называются смежными и как их найти.

Рассмотрим подробнее определение и свойства смежных углов, а также как их вычислить по данным в задаче.

Определение и свойства смежных углов

Два луча, исходящие из одной точки образуют фигуру под названием «плоский угол». При этом эта точка именуется вершиной угла, а лучи являются его сторонами. Если продолжить один из лучей дальше начальной точки по прямой, то образуется еще один угол, который и называется смежным. У каждого угла в этом случае есть два смежных угла, так как стороны угла равнозначны. То есть всегда присутствует еще смежный угол в 180 градусов.

К основным свойствам смежных углов относят

  • Смежные углы имеют общую вершину и одну сторону;
  • Сумма смежных углов равна всегда 180 градусам или числу Пи, если вычисление ведется в радианах;
  • Синусы смежных углов всегда равны;
  • Косинусы и тангенсы смежных углов равны, но имеют противоположные знаки.

Как найти смежные углы

Обычно даются три вариации задач на нахождение величины смежных углов

  • Дана величина основного угла;
  • Дано соотношение основного и смежного угла;
  • Дана величина вертикального угла.
Читать еще:  Лучшие пляжи филиппин. Лучшие острова-курорты филиппин

Каждый вариант задачи имеет свое решение. Рассмотрим их.

Дана величина основного угла

Если в задаче указана величина основного угла, то найти смежный угол очень просто. Для этого достаточно из 180 градусов вычесть величину основного угла, и вы получите величину смежного угла. Данное решение исходит из свойства смежного угла — сумма смежных углов равна всегда 180 градусам.

Если же величина основного угла дана в радианах и в задаче требуется найти смежный угол в радианах, то необходимо вычесть из числа Пи величину основного угла, так как величина полного развернутого угла в 180 градусов равна числу Пи.

Дано соотношение основного и смежного угла

В задаче может быть дано соотношение основного и смежного угла вместо градусов и радиан величины основного угла. В этом случае решение будет выглядеть, как уравнение пропорции:

  1. Обозначаем долю пропорции основного угла, как переменную «Y».
  2. Долю относящуюся к смежному углу обозначаем, как переменную «Х».
  3. Количество градусов, которые приходятся на каждую пропорцию, обозначим, например, «a».
  4. Общая формула будет выглядеть так — a*X+a*Y=180 или a*(X+Y)=180.
  5. Находим общий множитель уравнения «a» по формуле a=180/(X+Y).
  6. Затем полученное значение общего множителя «а» умножаем на долю угла, который необходимо определить.

Таким образом мы можем найти величину смежного угла в градусах. Однако, если необходимо найти величину в радианах, то нужно просто перевести градусы в радианы. Для этого умножаем угол в градусах на число Пи и делим все на 180 градусов. Полученное значение будет в радианах.

Дана величина вертикального угла

Если в задаче не дана величина основного угла, но дана величина вертикального угла, то вычислить смежный угол можно по такой же формуле, что и в первом пункте, где дана величина основного угла.

Вертикальный угол — это угол, который исходит из той же точки, что и основной, но при этом он направлен в строго противоположном направлении. Тем самым получается зеркальное отражение. Это значит, что вертикальный угол по величине равен основному. В свою очередь, смежный угол вертикального угла равен смежному углу основного угла. Благодаря этому можно вычислить смежный угол основного угла. Для этого просто вычитаем из 180 градусов величину вертикального и получаем значение смежного угла основного угла в градусах.

Если же величина дана в радианах, то необходимо вычесть из числа Пи величину вертикального угла, так как величина полного развернутого угла в 180 градусов равна числу Пи.

Также вы можете прочесть наши полезные статьи и .

В процессе изучения курса геометрии понятия “угол”, “вертикальные углы”, “смежные углы” встречаются достаточно часто. Понимание каждого из терминов поможет разобраться в поставленной задаче и правильно ее решить. Что такое смежные углы и как их определять?

Смежные углы – определение понятия

Термин “смежные углы” характеризует два угла, образованных общим лучом и двумя дополнительными полупрямыми, лежащими на одной прямой. Все три луча выходят из одной точки. Общая полупрямая является одновременно стороной как одного, так и второго угла.

Смежные углы – основные свойства

1. Исходя из формулировки смежных углов, нетрудно заметить, что сумма таких углов всегда образует развернутый угол, градусная мера которого равна 180°:

  • Если μ и η являются смежными углами, то μ + η = 180°.
  • Зная величину одного из смежных углов (например, μ), можно легко вычислить градусную меру второго угла (η), используя выражение η = 180° – μ.

2. Данное свойство углов позволяет сделать следующий вывод: угол, являющийся смежным прямому углу, также будет прямым.

3. Рассматривая тригонометрический функции (sin, cos, tg, ctg), основываясь на формулах приведения для смежных углов μ и η справедливо следующее:

  • sinη = sin(180° – μ) = sinμ,
  • cosη = cos(180° – μ) = -cosμ,
  • tgη = tg(180° – μ) = -tgμ,
  • ctgη = ctg(180° – μ) = -ctgμ.


Смежные углы – примеры

Задан треугольник с вершинами M, P, Q – ΔMPQ. Найти углы, смежные углам ∠QMP, ∠MPQ, ∠PQM.

  • Продлим каждую из сторон треугольника прямой.
  • Зная о том, что смежные углы дополняют друг друга до развернутого угла, выясняем, что:

смежным для угла ∠QMP будет ∠LMP,

смежным для угла ∠MPQ будет ∠SPQ,

смежным для угла ∠PQM будет ∠HQP.


Величина одного смежного угла составляет 35°. Чему равна градусная мера второго смежного угла?

  • Два смежных угла в сумме образуют 180°.
  • Если ∠μ = 35°, то смежный ему ∠η = 180° – 35° = 145°.

Определить величины смежных углов, если известно, что градусная мера одного из низ втрое больше градусной меры другого угла.

  • Обозначим величину одного (меньшего) угла через – ∠μ = λ.
  • Тогда, согласно условию задачи, величина второго угла будет равна ∠η = 3λ.
  • Исходя из основного свойства смежных углов, μ + η = 180° следует

λ + 3λ = μ + η = 180°,

Значит первый один угол ∠μ = λ = 45°, а второй угол ∠η = 3λ = 135°.

Читать еще:  Существует ли ад и рай. История ада


Умение апеллировать терминологией, а также знание основных свойств смежных углов поможет справиться с решением многих геометрических задач.

Смежные углы

Что такое смежные углы? Какие у них свойства?

Определение.

Смежные углы — это углы, у которых одна сторона — общая, а другие стороны лежат на одной прямой.

∠1 и ∠2 — смежные углы

Сколько смежных углов образуется при пересечении двух прямых?

При пересечении двух прямых образуется четыре пары смежных углов:

Но, так как ∠1 =∠4, ∠2=∠3 (как вертикальные), то достаточно рассмотреть только одну из этих пар.

Свойство смежных углов.

Сумма смежных углов равна 180º.

1) Даны два смежных угла. Один на 42 градуса больше другого. Найти эти углы.

∠AOC и ∠BOC — смежные,

∠AOC на 42º больше, чем ∠BOC

Найти: ∠AOC и ∠BOC.

Пусть ∠BOC=хº, тогда ∠AOC= х+42º. Так как сумма смежных углов равна 180º, то ∠BOC+∠AOC=180º.

Значит, ∠BOC= 69º, ∠AOC=69+42=111º.

Ответ: 69º и 111º.

2) Найти смежные углы, если их градусные меры относятся как 4:5.

Пусть k — коэффициент пропорциональности. Тогда ∠2 =4kº , ∠1=5kº. Так как сумма смежных углов равна 180º, ∠1 +∠2=180º.

Значит, смежные углы равны 4∙20=80º и 5∙20=100º.

Ответ: 80º и 100º.

3) Один из углов, образованных при пересечении двух прямых, в 5 раз больше другого. Найти эти углы.

Дано: AB и CD — прямые, O — точка их пересечения,

∠AOD в 5 раз больше, чем ∠BOD

При пересечении двух прямых образуются смежные и вертикальные углы. Так как вертикальные углы равны между собой, то углы∠AOD и ∠BOD — смежные. Пусть ∠BOD=xº, тогда ∠AOD=5xº. Так как сумма смежных углов равна 180º, ∠AOD +∠BOD=180º.

Значит, ∠BOD=30º, ∠AOD=5∙30=150º.

Ответ: 30º и 150º.

Могут ли смежные углы быть равными?

Да. Если смежные углы равны между собой, то, так как сумма смежных углов равна 180º, каждый из них равен половине суммы, то есть 90º.

угол, смежный с прямым, есть прямой угол.

Могут ли два смежных угла быть тупыми? Острыми?

Нет. Так как градусная мера тупого угла больше 90º, то сумма двух тупых углов больше 180º. А сумма смежных углов равна 180º.

Градусная мера острого угла меньше 90º. Значит, сумма двух острых углов меньше 180º.

Таким образом, в паре смежных углов один — тупой, другой — острый (или оба прямые).

Смежные и вертикальные углы. Перпендикулярные прямые. Н.Никитин Геометрия

§11. СМЕЖНЫЕ И ВЕРТИКАЛЬНЫЕ УГЛЫ.

Если мы продолжим сторону какого-нибудь угла за его вершину, то получим два угла (черт. 72): / А ВС и / СВD, у которых одна сторона ВС общая, а две другие АВи ВD составляют прямую линию.

Два угла, у которых одна сторона общая, а две другие составляют прямую линию, называются смежными углами.

Смежные углы можно получить и таким образом: если из какой-нибудь точки прямой проведём луч (не лежащий на данной прямой), то получим смежные углы.
Например, / АDF и / FDВ — углы смежные (черт. 73).

Смежные углы могут иметь самые разнообразные положения (черт. 74).

Смежные углы в сумме составляют развёрнутый угол, поэтому сумма двух смежных углов равна 2d.

Отсюда прямой угол можно определить как угол, равный своему смежному углу.

Зная величину одного из смежных углов, мы можем найти величину другого смежного с ним угла.

Например, если один из смежных углов равен 3 / 5 d , то второй угол будет равен:

2. Вертикальные углы.

Если мы продолжим стороны угла за его вершину, то получим вертикальные углы. На чертеже 75 углы EOF и АОС- вертикальные; углы АОЕ и СОF — также вертикальные.

Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого угла.

Пусть / 1 = 7 / 8 d (черт. 76). Смежный с ним / 2 будет равен 2d — 7 / 8 d , т. е. 1 1 / 8 d .

Таким же образом можно вычислить, чему равны / 3 и / 4.
/ 3 = 2d — 1 1 / 8 d = 7 / 8 d ; / 4 = 2d — 7 / 8 d = 1 1 / 8 d (черт. 77).

Можно решить ещё несколько таких же задач, и каждый раз будет получаться один и тот же результат: вертикальные углы равны между собой.

Однако, чтобы убедиться в том, что вертикальные углы всегда равны между собой, недостаточно рассмотреть отдельные числовые примеры, так как выводы, сделанные на основе частных примеров, иногда могут быть и ошибочными.

Убедиться в справедливости свойства вертикальных углов необходимо путём рассуждения, путём доказательства.

Доказательство можно провести следующим образом (черт. 78):

(так как сумма смежных углов равна 2d ).

(так как и левая часть этого равенства равна 2d , и правая его часть тоже равна 2d ).

В это равенство входит один и тот же угол с .

Если мы от равных величин отнимем поровну, то и останется поровну. В результате получится: / a = / b , т. е. вертикальные углы равны между собой.

При рассмотрении вопроса о вертикальных углах мы сначала объяснили, какие углы называются вертикальными, т. е. дали определение вертикальных углов.

Затем мы высказали суждение (утверждение) о равенстве вертикальных углов и в справедливости этого суждения убедились путём доказательства. Такие суждения, справедливость которых надо доказывать, называются теоремами . Таким образом, в данном параграфе мы дали определение вертикальных углов, а также высказали и доказали теорему об их свойстве.

Читать еще:  Игры для девочек. Игры Пони креатор v3

В дальнейшем при изучении геометрии нам постоянно придётся встречаться с определениями и доказательствами теорем.

3. Сумма углов, имеющих общую вершину.

На чертеже 79 / 1, / 2, / 3 и / 4 расположены по одну сторону прямой и имеют общую вершину на этой прямой. В сумме эти углы составляют развёрнутый угол, т. е.
/ 1+ / 2+/ 3+ / 4 = 2d .

На чертеже 80 / 1, / 2, / 3, / 4 и / 5 имеют общую вершину. В сумме эти углы составляют полный угол, т. е. / 1 + / 2 + / 3 + / 4 + / 5 = 4d .

1. Один из смежных углов равен 0,72 d. Вычислить угол, составленный биссектрисами этих смежных углов.

2. Доказать, что биссектрисы двух смежных углов образуют прямой угол.

3. Доказать, что если два угла равны, то равны и их смежные углы.

4. Сколько пар смежных углов на чертеже 81?

5. Может ли пара смежных углов состоять из двух острых углов? из двух тупых углов? из прямого и тупого угла? из прямого и острого угла?

6. Если один из смежных углов прямой, то что можно сказать о величине смежного с ним угла?

7. Если при пересечении двух прямых линий один угол прямой, то что можно сказать о величине остальных трёх углов?

по теме: Смежные и вертикальные углы, их свойства.

В результате изучения темы нужно:

Понятия: смежных и вертикальных углов, перпендикулярных прямых

Различать понятия смежные и вертикальные углы

Теоремы смежных и вертикальных углов

Решать задачи с использованием свойств смежных и вертикальных углов

Свойства смежных и вертикальных углов

Строить смежные и вертикальные углы, перпендикулярные прямые

1. Геометрия. 7 класс. Ж. Кайдасов, Г. Досмагамбетова, В. Абдиев. Алматы «Мектеп». 2012

2. Геометрия. 7 класс. К.О.Букубаева, А.Т. Миразова. Алматы « Атамұра ». 2012

3. Геометрия. 7 класс. Методическое руководство. К.О.Букубаева. Алматы « Атамұра ». 2012

4. Геометрия. 7 класс. Дидактический материал. А.Н.Шыныбеков. Алматы « Атамұра ». 2012

5. Геометрия. 7 класс. Сборник задач и упражнений. К.О.Букубаева, А.Т.Миразова. Алматы « Атамұра ». 2012

Помни, что работать нужно по алгоритму!

Не забывай проходить проверку, делать пометки на полях,

Пожалуйста, не оставляй без ответа, возникшие у тебя вопросы.

Будь объективен во время взаимопроверки, это поможет и тебе, и тому,

кого ты проверяешь.

Прочитай определение и выучи (2б):

Определение. Углы, у которых одна сторона общая, а две другие стороны являются дополнительными лучами, называются смежными.

2) Выучи и запиши в тетрадь теорему: (2б)

Сумма смежных углов равна 180.

∠ АОД и ∠ ДОВ –данные смежные углы

ОД — общая сторона

На основе аксиомы III 4:

∠ АОД + ∠ ДОВ = ∠ АОВ.

∠ АОВ — развернутый. Следовательно,

3) Из теоремы следует: (2б)

1) Если два угла равны, то смежные с ними углы равны;

2) если смежные углы равны, то градусная мера каждого из них равна 90°.

Угол, равный 90°, называется прямым углом.

Угол, меньше 90°, называется острым углом.

Угол, больше 90° и меньше 180°, называется тупым углом.

Прямой угол Острый угол Тупой угол

Так как сумма смежных углов равна 180°, то

1) угол, смежный с прямым углом, прямой;

2) угол, смежный с острым углом, тупой;

3) угол, смежный с тупым углом, острый.

4) Рассмотри образец решения з адачи:

а) Дано: ∠ h k и ∠ kl — смежные; ∠ h k больше ∠ kl на 50° .

Найти: ∠ h k и ∠ kl .

Решение: Пусть ∠ kl = х, тогда ∠ h k = х + 50°. По свойству о сумме смежных углов ∠ kl + ∠ h k = 180°.

∠ kl = 65°; ∠ h k = 65°+ 50° = 115°.

б) Пусть ∠ kl = х, тогда ∠ h k = 3х

х + 3х = 180°; 4х = 180°; х = 45°; ∠ kl = 45°; ∠ hk = 135°.

5) Работа с определением смежных углов: (2 б)

6) Найди ошибки в определениях: (2б)

Пройди проверку №1

1)Построй 2 смежных угла так, чтобы их общая сторона проходила через точку C и сторона одного из углов совпадала с лучом AB.(2б)

2). Практическая работа на открытие свойства смежных углов: (5б)

1. Построй угол смежный углу а , если а : острый, прямой, тупой.

2. Измерь величины углов.

3.Данные измерений занеси в таблицу.

4. Найди соотношение между величинами углов а и .

5. Сделай вывод о свойстве смежных углов.

Пройди проверку №2

Начертите неразвернутый ∠ АОВ и назовите лучи, являющиеся сторонами этого угла.

Проведите луч О, являющийся продолжение луча ОА, и луч ОД, являющийся продолжение луча ОВ.

Запишите в тетради: углы ∠ АОВ и ∠ СОД называются вертикальными. (3б)

Выучи и запиши в тетрадь: (4б)

Определение: Углы, у которых стороны одного из них являются дополнительными лучами другого, называются вертикальными углами.

Источники:

http://diwalini.ru/n-nikitin-geometriya-smezhnye-ugly-polnye-uroki-gipermarket.html

Смежные углы

http://bmxx.ru/breath/smezhnye-i-vertikalnye-ugly-perpendikulyarnye-pryamye-n-nikitin/

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector