Геодезические сети. Метод триангуляции

Геодезические сети. Метод триангуляции

Триангул я ция (от лат. triangulum — треугольник) — один из методов создания опорной геодезической сети.

Состоит в построении рядов или сетей примыкающих друг к другу треугольников и в определении положения их вершин в избранной системе координат. В каждом треугольнике измеряют все три угла, а одну из его сторон определяют из вычислений путём последовательного решения предыдущих треугольников, начиная от того из них, в котором одна из его сторон получена из измерений. Если сторона треугольника получена из непосредственных измерений, то она называется базисной стороной триангуляции. В рядах или сетях триагуляции для контроля и повышения их точности измеряют большее число базисов или базисных сторон, чем это минимально необходимо.

Принято считать, что метод триангуляции изобрёл и впервые применил В. Снеллиус в 1615–17 гг. при прокладке ряда треугольников в Нидерландах для градусных измерений. Работы по применению метода триангуляции для топографических съёмок в дореволюционной России начались на рубеже 18–19 вв. К началу 20 в. метод триангуляции получил повсеместное распространение.

Триангуляция имеет большое научное и практическое значение. Она служит для: определения фигуры и размеров Земли методом градусных измерений; изучения горизонтальных движений земной коры; обоснования топографических съёмок в различных масштабах и целях; обоснования различных геодезических работ при изыскании, проектировании и строительстве крупных инженерных сооружений, при планировке и строительстве городов и т.д.

При построении триангуляции в государственной геодезической сети (ГГС) исходят из принципа перехода от общего к частному, от крупных треугольников к более мелким. В связи с этим триангуляция подразделяется на классы, отличающиеся точностью измерений и последовательностью их построения. В малых по территории странах триангуляция высшего класса строят в виде сплошных сетей треугольников. В государствах с большой территорией (Россия, Китай, Индия, США, Канада и др.) триангуляцию строят по некоторой схеме и программе.

Государственная триангуляция РФ делится на 4 класса (рис.).

Государственная триангуляция 1-го класса строится в виде рядов треугольников со сторонами 20–25 км, расположенных примерно вдоль меридианов и параллелей и образующих полигоны с периметром 800–1000 км. Углы треугольников в этих рядах измеряют высокоточными теодолитами, с погрешностью не более ± 0,7″. В местах пересечения рядов триангуляции 1-го класса измеряют базисы при помощи мерных проволок, причём погрешность измерения базиса не превышает 1 : 1000000 доли его длины, а выходные стороны базисных сетей определяются с погрешностью около 1 : 300 000. После изобретения высокоточных электрооптических дальномеров стали измерять непосредственно базисные стороны с погрешностью не более 1 : 400 000.

Пространства внутри полигонов триангуляции 1-го класса покрывают сплошными сетями треугольников 2-го класса со сторонами около 10–20 км, причём углы в них измеряют с той же точностью, как и в 1-ом классе. В сплошной сети триангуляции 2-го класса внутри полигона 1-го класса измеряется также базисная сторона с указанной выше точностью. На концах каждой базисной стороны 1-го и 2-го классов выполняют астрономические определения широты и долготы с погрешностью не более ± 0,4«, а также азимута с погрешностью около ± 0,5«. Кроме того, астрономические определения широты и долготы выполняют и на промежуточных пунктах рядов триангуляции 1-го класса через каждые примерно 100 км, а по некоторым особо выделенным рядам и значительно чаще.

Читать еще:  К чему снится отвалившиеся. К чему снится Падать

На основе рядов и сетей триангуляции 1-го и 2-го классов определяют пункты триангуляции 3-го и 4-го классов, причём их густота зависит от масштаба топографической съёмки. Например, при масштабе съёмки 1 : 5000 один пункт триангуляции должен приходиться на каждые 20–30 км 2 . В сетях триангуляции 3-го и 4-го классов погрешности измерения углов не превышают соответственно 1,5« и 2,0«.

В практике допускается вместо триангуляции применять метод полигонометрии. При этом ставится условие, чтобы при построении опорной геодезической сети тем и др. методом достигалась одинаковая точность определения положения пунктов земной поверхности.

Вершины треугольников триангуляции. обозначаются на местности деревянными или металлическими вышками высотой от 6 до 55 м в зависимости от условий местности (см. Сигнал геодезический). Пункты триангуляции в целях долговременной их сохранности на местности закрепляются закладкой в грунт особых устройств в виде металлических труб или бетонных монолитов с вделанными в них металлическими марками (см. Центр геодезический), фиксирующими положение точек, для которых даются координаты в соответствующих каталогах.

Координаты пунктов триангуляции определяют из математической обработки рядов или сетей. Построение триангуляции и её математическая обработка приводят к созданию на всей территории страны единой системы координат, позволяющей ставить топографо-геодезические работы в разных частях страны одновременно и независимо друг от друга. При этом обеспечивается соединение этих работ в одно целое и создание единой общегосударственной топографической карты страны в установленном масштабе.

Методы создания ГГС: триангуляция, полигонометрия, трилатерация

Метод триангуляции. Принято считать, что метод триангуляции впервые был предложен голландским ученым Снеллиусом в 1614 г. Этот метод широко применяется во всех странах. Сущность метода заключается в следующем. На командных высотах местности закрепляют систему геодезических пунктов, образующих сеть треугольников (рис. 13). В Сеть триангуляции этой сети определяют координаты исходного пункта А, измеряют горизонтальные углы в каждом треугольнике, а также длины b и азимуты а базисных сторон, задающих масштаб и ориентировку сети по азимуту.

Сеть триангуляции может быть построена в виде отдельного ряда треугольников, системы рядов треугольников, а также в виде сплошной сети треугольников. Элементами сети триангуляции могут служить не только треугольники, но и более сложные фигуры: геодезические четырехугольники и центральные системы.

Основными достоинствами метода триангуляции являются его оперативность и возможность использования в разнообразных физико-географических условиях; большое число избыточных измерений в сети, позволяющих непосредственно в поле осуществлять надежный контроль всех измеренных величин; высокая точность определения взаимного положения смежных пунктов в сети, особенно сплошной. Метод триангуляции получил наибольшее распространение при построении государственных геодезических сетей.

Метод полигонометрии. Этот метод известен также давно, однако применение его при создании государственной геодезической сети сдерживалось до недавнего времени.

Полигонометрический ход трудоемкостью линейных измерений, выполняемых ранее с помощью инварных проволок. Начиная примерно с шестидесятых годов текущего столетия, одновременно с внедрением в геодезическое производство точных свето и радиодальномеров, метод полигонометрии получил дальнейшее развитие и стал широко применяться при создании геодезических сетей.

Сущность этого метода состоит в следующем. На местности закрепляют систему геодезических пунктов, образующих вытянутый одиночный ход (рис. 14) или систему пересекающихся ходов, образующих сплошную сеть. Между смежными пунктами хода измеряют длины сторон s,-, а на пунктах — углы поворота р. Азимутальное ориентирование полигонометрического хода осуществляют с помощью азимутов, определяемых или заданных, как правило, на конечных пунктах его, измеряя при этом примычные углы у. Иногда прокладывают полигонометрические ходы между пунктами с заданными координатами геодезической сети более высокого класса точности.

Читать еще:  Скачать игры для девочек 10 лет андроид. Игры для девочек на андроид

Метод полигонометрии в ряде случаев, например, в заселённой местности, на территории крупных городов и т. п. оказывается более оперативным и более экономичным, чем метод триангуляции. Это обусловлено тем, что в таких условиях на пунктах триангуляции строят более высокие геодезические знаки, чем на пунктах полигонометрии, поскольку в первом случае следует обеспечить прямую видимость между гораздо большим числом пунктов, чем во втором. Постройка ,же геодезических знаков является самым дорогостоящим видом работ при создании геодезической сети (в среднем 50-60 % всех затрат).

Метод трилатерации. Данный метод, как и метод триангуляции, предусматривает создание на местности геодезических сетей либо в виде цепочки треугольников, геодезических четырехугольников и центральных систем, либо в виде сплошных сетей треугольников, в которых измеряются не углы, а длины сторон. В трилатерации, как и в триангуляции, для ориентирования сетей на местности должны быть определены азимуты ряда сторон.

По мере развития и повышения точности свето- и радиодальномерной техники измерений расстояний метод трилатерации постепенно приобретает все большее значение, особенно в практике инженерно-геодезических работ.

Методы построения государственной геодезической сети

Основные методы построения государственной геодезической сети

Основными методами построяния государственной геодезической сети являются триангуляция, полигонометрия, трилатерация и спутниковые координатные определения. Выбор конкретного метода определяется условиями местности, требуемой точностью и экономической эффективностью.

Триангуляция

Считают, что метод триангуляции предложен в 1614 г. Снеллиусом. На командных высотах устанавливают геодезические пункты, соединяя которые, получают треугольники (рис. 1.3). В сети треугольников известными являются координаты пункта А, базис в и дирекционный угол а стороны АВ или координаты пунктов А и В. На пунктах триангуляции в треугольниках измеряют горизонтальные углы. Вычислив дирекционные углы и длины сторон треугольников, определяют координаты всех пунктов сети.

Полигонометрия

На местности строят геодезические пункты, которые соединяют между собой одиночным ходом или системой ходов, в которых измеряют длины сторон Si, соединяющие пункты, и на пунктах — углы поворота βi. Конечные пункты полигонометрии являются опорными, и на них измеряют примычные углы β и βn между твердыми и определяемыми сторонами, для твердых сторон известны дирекционные углы или азимуты. В крупных городах, в залесенной местности и т. п. метод полигонометрии может быть более эффективным, так как требует менее высоких геодезических знаков, с которых нужно обеспечить видимость на гораздо меньшее число пунктов, чем в триангуляции и трилатерации (в среднем на постройку знаков приходится 50-60% всех затрат, их стоимость возрастает примерно пропорционально квадрату увеличения высот).

Недостатками полигонометрии по сравнению с триангуляцией являются: меньшая жесткость геометрического построения, меньшее число условных уравнений, слабый контроль полевых измерений, обеспечение узкой полосы местности.

Трилатерация

Трилатерация, как и триангуляция, состоит из цепочки треугольников, геодезических четырехугольников, центральных систем, сплошных сетей треугольников, в которых измеряют длины сторон. Исходными в трилатерации являются координаты одного или нескольких пунктов, а также дирекционные углы одной или нескольких сторон. Совершенствование и повышение точности свето- и радиодальномеров увеличивает роль трилатерации, особенно в инженерно-геодезических работах.

Читать еще:  Видеть во сне красивые цветы в горшках. К чему снятся цветы в горшках

Линейно-угловые геодезические сети

В этих построениях измеряют углы и стороны треугольников, на некоторых линиях для ориентирования определяют азимуты Лапласа. Линейно-угловые сети создают для достижения максимальной точности определения координат пунктов, но они требуют гораздо больших затрат, чем триангуляция или трилатерация. Для достижения наибольшего эффекта угловых и линейных измерений целесообразно, чтобы mN/ρ = ms/s, где ms — средняя квадратическая ошибка измерения направления; р = 206 265″; ms/s — относительная средняя квадратическая ошибка измерения длин сторон, причем mN и ms должны определяться по невязкам — свободным членам условных уравнений.

Комбинированные геодезические сети

Комбинированные геодезические сети создают на местности с сильно различающимися условиями, когда по технико-экономическим показателям целесообразно на одном участке создавать, например, триангуляцию, а на соседних — полигонометрию или трилатерацию.

Опорные сети из астрономических пунктов

Опорные сети из астрономических пунктов создают при топографических съемках масштаба 1:100 000 и мельче, пункты этой сети располагают на расстоянии 80-100 км. Для перехода к геодезическим широтам и долготам в астрономические координаты вводят поправки за уклонения отвесных линий, определяемые в первом приближении по данным гравиметрической съемки. Этот метод применялся в нашей стране более 40 лет назад при съемках масштаба 1:100 000 в горных районах северо-востока и Средней Азии, сейчас там построена высокоточная геодезическая сеть.

Динамическая триангуляция

Динамическая триангуляция предложена в 1920 г. финским геодезистом Вяйсяля. Суть ее сводится к синхронному наблюдению подвижных высоких целей m1, m2. mn (воздушный шар, самолет и т. п.) с известных А, В и определяемых С, D пунктов (рис. 1.4)

Спутниковые методы создания геодезических сетей

Спутниковые методы создания геодезических сетей состоят из геометрических и динамических. В геометрическом методе ИСЗ используют как высокую визирную цель, в динамическом — ИСЗ является носителем координат. В геометрическом методе спутники фотографируют на фоне опорных звезд, что позволяет определить направления со станции слежения на спутники. Фотографирование нескольких положений ИСЗ с двух и более исходных и нескольких определяемых пунктов позволяет получить координаты определяемых пунктов. Эту же задачу решают путем измерения расстояния до спутников. Создание навигационных систем (в России — Глонасс и в США — Navstar), состоящих не менее чем из 18 ИСЗ, позволяет в любой момент в любой части Земли определять геоцентрические координаты X, Y, Z, с более высокой точностью, чем используемая ранее американская навигационная система Transit, которая позволяет определять координаты X, Y, Z, с ошибкой 3-5 м.

Радиоинтерферометрия со сверхдлинной базой (РСДБ)

Состоит из радиотелескопов А и В (рис. 1.5), установленных на расстоянии D — базы интерферометра. Радиотелескопы синхронно принимают в сантиметровом диапазоне излучения одного и того же квазара К — внегалактического радиоисточника. Обработка записанных радиосигналов позволяет определить временную задержку моментов τ прихода фронта радиоволны к радиотелескопу А относительно В, а также частоту интерференции ƒ. Разность расстояний от радиотелескопов до квазара на момент наблюдения Δs = τΔ, где υ — скорость распространения радиоволн.

Источники:

http://spbtgik.ru/book/2352.htm

http://studopedia.ru/7_71520_metodi-sozdaniya-ggs-triangulyatsiya-poligonometriya-trilateratsiya.html

http://www.drillings.ru/metody-geodseti

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector