Угол между прямыми параметрически. Угол между двумя прямыми

УГОЛ МЕЖДУ ПРЯМЫМИ

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и . Так как , то по формуле для косинуса угла между векторами получим

.

Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторов и :

Две прямые параллельны тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, т.е. l1 параллельна l2 тогда и только тогда, когда параллелен .

Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих коэффициентов равна нулю: .

Угол между прямой и плоскостью

Пусть прямая d — не перпендикулярна плоскости θ;
d′− проекция прямой d на плоскость θ;
Наименьший из углов между прямыми d и d′ мы назовем углом между прямой и плоскостью.
Обозначим его как φ=(d,θ)
Если d⊥θ , то (d,θ)=π/2

Oijk→− прямоугольная система координат.
Уравнение плоскости:

Считаем, что прямая задана точкой и направляющим вектором: d[M0,p→]
Вектор n→(A,B,C)⊥θ
Тогда остается выяснить угол между векторами n→ и p→, обозначим его как γ=(n→,p→).

Если угол γ π/2 , то искомый угол φ=γ−π/2

Тогда, угол между прямой и плоскостьюможно считать по формуле:

Вопрос29. Понятие квадратичной формы. Знакоопределенность квадратичных форм.

Квадратичной формой j (х1, х2, …, xn) n действительных переменных х1, х2, …, xn называется сумма вида , (1)

где aij – некоторые числа, называемые коэффициентами. Не ограничивая общности, можно считать, что aij = aji.

Квадратичная форма называется действительной, если aij Î ГR. Матрицей квадратичной формы называется матрица, составленная из ее коэффициентов. Квадратичной форме (1) соответствует единственная симметричная матрица Т. е. А Т = А. Следовательно, квадратичная форма (1) может быть записана в матричном виде j (х) = х Т Ах, где х Т = (х1 х2xn). (2)

И, наоборот, всякой симметричной матрице (2) соответствует единственная квадратичная форма с точностью до обозначения переменных.

Рангом квадратичной формы называют ранг ее матрицы. Квадратичная форма называется невырожденной, если невырожденной является ее матрица А. (напомним, что матрица А называется невырожденной, если ее определитель не равен нулю). В противном случае квадратичная форма является вырожденной.

Квадратичная форма (1) называется положительно определенной (или строго положительной), если

Матрица А положительно определенной квадратичной формы j (х) также называется положительно определенной. Следовательно, положительно определенной квадратичной форме соответствует единственная положительно определенная матрица и наоборот.

Читать еще:  Бывший президент ссср горбачев. Горбачёв Михаил Сергеевич

Квадратичная форма (1) называется отрицательно определенной (или строго отрицательной), если

j (х) 2 требуются специальные критерии для проверки знакоопределенности квадратичной формы. Рассмотрим их.

Главными минорами квадратичной формы называются миноры:

то есть это миноры порядка 1, 2, …, n матрицы А, расположенные в левом верхнем углу, последний из них совпадает с определителем матрицы А.

Критерий положительной определенности (критерий Сильвестра)

Для того чтобы квадратичная форма j (х) = х Т Ах была положительно определенной, необходимо и достаточно, что все главные миноры матрицы А были положительны, то есть: М1 > 0, M2 > 0, …, Mn > 0. Критерий отрицательной определенностиДля того чтобы квадратичная форма j (х) = х Т Ах была отрицательно определенной, необходимо и достаточно, чтобы ее главные миноры четного порядка были положительны, а нечетного – отрицательны, т. е.: М1 0, М3 n

109.201.137.33 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Угол между двумя прямыми

Буду кратким. Угол между двумя прямыми равен углу между их направляющими векторами. Таким образом, если вам удастся найти координаты направляющих векторов a = (x1; y1; z1) и b = (x2; y2; z2), то сможете найти угол. Точнее, косинус угла по формуле:

Посмотрим, как эта формула работает на конкретных примерах:

Задача. В кубе ABCDA1B1C1D1 отмечены точки E и F — середины ребер A1B1 и B1C1 соответственно. Найдите угол между прямыми AE и BF.

Поскольку ребро куба не указано, положим AB = 1. Введем стандартную систему координат: начало в точке A, оси x, y, z направим вдоль AB, AD и AA1 соответственно. Единичный отрезок равен AB = 1. Теперь найдем координаты направляющих векторов для наших прямых.

Найдем координаты вектора AE. Для этого нам потребуются точки A = (0; 0; 0) и E = (0,5; 0; 1). Поскольку точка E — середина отрезка A1B1, ее координаты равны среднему арифметическому координат концов. Заметим, что начало вектора AE совпадает с началом координат, поэтому AE = (0,5; 0; 1).

Теперь разберемся с вектором BF. Аналогично, разбираем точки B = (1; 0; 0) и F = (1; 0,5; 1), т.к. F — середина отрезка B1C1. Имеем:
BF = (1 − 1; 0,5 − 0; 1 − 0) = (0; 0,5; 1).

Итак, направляющие векторы готовы. Косинус угла между прямыми — это косинус угла между направляющими векторами, поэтому имеем:

Задача. В правильной трехгранной призме ABCA1B1C1, все ребра которой равны 1, отмечены точки D и E — середины ребер A1B1 и B1C1 соответственно. Найдите угол между прямыми AD и BE.

Введем стандартную систему координат: начало координат в точке A, ось x направим вдоль AB, z — вдоль AA1. Ось y направим так, чтобы плоскость OXY совпадала с плоскостью ABC. Единичный отрезок равен AB = 1. Найдем координаты направляющих векторов для искомых прямых.

Читать еще:  Спелые абрикосы. Сонник: абрикос

Для начала найдем координаты вектора AD. Рассмотрим точки: A = (0; 0; 0) и D = (0,5; 0; 1), т.к. D — середина отрезка A1B1. Поскольку начало вектора AD совпадает с началом координат, получаем AD = (0,5; 0; 1).

Теперь найдем координаты вектора BE. Точка B = (1; 0; 0) считается легко. С точкой E — серединой отрезка C1B1 — чуть сложнее. Имеем:

Осталось найти косинус угла:

Задача. В правильной шестигранной призме ABCDEFA1B1C1D1E1F1, все ребра которой равны 1, отмечены точки K и L — середины ребер A1B1 и B1C1 соответственно. Найдите угол между прямыми AK и BL.

Введем стандартную для призмы систему координат: начало координат поместим в центр нижнего основания, ось x направим вдоль FC, ось y — через середины отрезков AB и DE, а ось z — вертикально вверх. Единичный отрезок снова равен AB = 1. Выпишем координаты интересующих нас точек:

Точки K и L — середины отрезков A1B1 и B1C1 соответственно, поэтому их координаты находятся через среднее арифметическое. Зная точки, найдем координаты направляющих векторов AK и BL:

Теперь найдем косинус угла:

Задача. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, отмечены точки E и F — середины сторон SB и SC соответственно. Найдите угол между прямыми AE и BF.

Введем стандартную систему координат: начало в точке A, оси x и y направим вдоль AB и AD соответственно, а ось z направим вертикально вверх. Единичный отрезок равен AB = 1.

Точки E и F — середины отрезков SB и SC соответственно, поэтому их координаты находятся как среднее арифметическое концов. Выпишем координаты интересующих нас точек:
A = (0; 0; 0); B = (1; 0; 0)

Зная точки, найдем координаты направляющих векторов AE и BF:

Координаты вектора AE совпадают с координатами точки E, поскольку точка A — начало координат. Осталось найти косинус угла:

Угол между прямыми в пространстве

Пусть в пространстве заданы прямые l и m. Через некоторую точку А пространства проведем прямые l1 || l и m1 || m (рис. 138).

Заметим, что точка А может быть выбрана произвольно, в частности она может лежать на одной из данных прямых. Если прямые l и m пересекаются, то за А можно взять точку пересечения этих прямых (l1 = l и m1 = m).

Углом между непараллельными прямыми l и m называется величина наименьшего из смежных углов, образованных пересекающимися прямыми l1 и m1 ( l1 || l , m1 || m). Угол между параллельными прямыми считается равным нулю.

Угол между прямыми l и m обозначается ( widehat <(l;m)>). Из определения следует, что если он измеряется в градусах, то 0° π /2 .

Читать еще:  Описание сильных и слабых сторон. Личные качества в резюме с примерами

Найти угол между прямыми АВ и DС1.

Прямые АВ и DС1 скрещивающиеся. Так как прямая DC параллельна прямой АВ, то угол между прямыми АВ и DС1, согласно определению, равен (widehatDC>).

Следовательно, (widehat<(AB;DC_1)>) = 45°.

Прямые l и m называются перпендикулярными, если ( widehat <(l;m)>) = π /2. Например, в кубе

(см. рис. 139) прямая A1D1перпендикулярна прямым DC, DC1, СС1 .

Вычисление угла между прямыми.

Задача вычисления угла между двумя прямыми в пространстве решается так же, как и на плоскости. Обозначим через φ величину угла между прямыми l1 и l2, а через ψ — величину угла между направляющими векторами а и b этих прямых.

ψ 90° (рис. 206,6), то φ = 180° — ψ. Очевидно, что в обоих случаях верно равенство cos φ = |cos ψ|. По формуле (косинус угла между ненулевыми векторами а и b равен скалярному произведению этих векторов, деленному на произведение их длин) имеем

Пусть прямые заданы своими каноническими уравнениями

Тогда угол φ между прямыми определяется с помощью формулы

Если одна из прямых (или обе) задана не каноничecкими уравнениями, то для вычисления угла нужно найти координаты направляющих векторов этих прямых, а затем воспользоваться формулой (1).

Задача 1. Вычислить угол между прямыми

Направляющие векторы прямых имеют координаты:

По формуле (1) находим

Следовательно, угол между данными прямыми равен 60°.

Задача 2. Вычислить угол между прямыми

За направляющий вектор а первой прямой возьмем векторное произведение нормальных векторов n1 = (3; 0; -12) и n2 = (1; 1; -3) плоскостей, задающих эту прямую. По формуле ( [a; b]=begin i & j & k \ x_1 & y_1 & z_1 \ x_2 & y_2 & z_2 end ) получаем

$$ a=[n_1; n_2]=begin i & j & k \ 3 & 0 & -12 \ 1 & 1 & -3 end=12i-3i+3k $$

Аналогично находим направляющий вектор второй прямой:

$$ b=begin i & j & k \ 4 & -1 & 1 \ 0 & 1 & 1 end=-2i-4i+4k $$

Но формуле (1) вычисляем косинус искомого угла:

Следовательно, угол между данными прямыми равен 90°.

Задача 3. В треугольной пирамиде МАВС ребра MA, MB и МС взаимно перпендикулярны, (рис. 207);

их длины соответственно равны 4, 3, 6. Точка D — середина [МА]. Найти угол φ между прямыми СА и DB.

Пусть СА и DB — направляющие векторы прямых СА и DB.

Примем точку М за начало координат. По условию зядачи имеем А (4; 0; 0), В(0; 0; 3), С(0; 6; 0), D (2; 0; 0). Поэтому (overrightarrow) = (4; — 6;0), (overrightarrow)= (-2; 0; 3). Воспользуемся формулой (1):

По таблице косинусов находим, что угол между прямыми СА и DB равен приблизительно 72°.

Источники:

http://studopedia.ru/8_9088_ugol-mezhdu-dvumya-pryamimi-v-prostranstve-ugol-mezhdu-pryamoy-i-ploskostyu.html

http://www.berdov.com/ege/solid_geometry/line/

http://razdupli.ru/teor/84_ugol-mezhdu-pryamymi-v-prostranstve.php

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector