Решение квадратных уравнений по теореме виета примеры. Теорема Виета

Теорема Виета. Примеры использования

Теорема Виета. Если (x_1) и (x_2) – корни уравнения (x^2+px+q=0),то (beginx_1+x_2=-p \x_1 cdot x_2=qend)

Теорема Виета часто используется для проверки уже найденных корней квадратного уравнения . Если вы нашли корни, то сможете с помощью формул (beginx_1+x_2=-p \x_1 cdot x_2=qend) вычислить значения (p) и (q). И если они получатся такими же как в исходном уравнении – значит корни найдены верно.

Например, пусть мы, используя дискриминант , решили уравнение (x^2+x-56=0) и получили корни: (x_1=7), (x_2=-8). Проверим, не ошиблись ли мы в процессе решения. В нашем случае коэффициент (p=1), а (q=-56). По теореме Виета имеем:

Оба утверждения сошлись, значит, мы решили уравнение правильно.

Такую проверку можно проводить устно. Она займет 5 секунд и убережет вас от глупых ошибок.

Обратная теорема Виета

Если (beginx_1+x_2=-p \x_1 cdot x_2=qend), то (x_1) и (x_2) – корни квадратного уравнения (x^2+px+q=0).

Или по-простому: если у вас есть уравнение вида (x^2+px+q=0), то решив систему (beginx_1+x_2=-p \x_1 cdot x_2=qend) вы найдете его корни.

Благодаря этой теореме можно быстро подобрать корни квадратного уравнения, особенно если эти корни – целые числа . Это умение важно, так как экономит много времени.

Пример. Решить уравнение (x^2-5x+6=0).

Решение: Воспользовавшись обратной теоремой Виета, получаем, что корни удовлетворяют условиям: (beginx_1+x_2=5 \x_1 cdot x_2=6end).
Посмотрите на второе уравнение системы (x_1 cdot x_2=6). На какие два множителя можно разложить число (6)? На (2) и (3), (6) и (1) либо (-2) и (-3), и (-6) и (-1). А какую пару выбрать, подскажет первое уравнение системы: (x_1+x_2=5). Походят (2) и (3), так как (2+3=5).
Ответ: (x_1=2), (x_2=3).

Примеры. Используя теорему, обратную теореме Виета, найдите корни квадратного уравнения:
а) (x^2-15x+14=0); б) (x^2+3x-4=0); в) (x^2+9x+20=0); г) (x^2-88x+780=0).

Решение:
а) (x^2-15x+14=0) – на какие множители раскладывается (14)? (2) и (7), (-2) и (-7), (-1) и (-14), (1) и (14). Какие пары чисел в сумме дадут (15)? Ответ: (1) и (14).

б) (x^2+3x-4=0) – на какие множители раскладывается (-4)? (-2) и (2), (4) и (-1), (1) и (-4). Какие пары чисел в сумме дадут (-3)? Ответ: (1) и (-4).

в) (x^2+9x+20=0) – на какие множители раскладывается (20)? (4) и (5), (-4) и (-5), (2) и (10), (-2) и (-10), (-20) и (-1), (20) и (1). Какие пары чисел в сумме дадут (-9)? Ответ: (-4) и (-5).

г) (x^2-88x+780=0) – на какие множители раскладывается (780)? (390) и (2). Они в сумме дадут (88)? Нет. Еще какие множители есть у (780)? (78) и (10). Они в сумме дадут (88)? Да. Ответ: (78) и (10).

Необязательно последнее слагаемое раскладывать на все возможные множители (как в последнем примере). Можно сразу проверять дает ли их сумма (-p).

Важно! Теорема Виета и обратная теорема работают только с приведённым квадратным уравнением , то есть таким, у которого коэффициент перед (x^2) равен единице. Если же у нас изначально дано не приведенное уравнение, то мы можем сделать его приведенным, просто разделив на коэффициент, стоящий перед (x^2).

Например, пусть дано уравнение (2x^2-4x-6=0) и мы хотим воспользоваться одной из теорем Виета. Но не можем, так как коэффициент перед (x^2) равен (2). Избавимся от него, разделив все уравнение на (2).

Готово. Теперь можно пользоваться обеими теоремами.

Ответы на часто задаваемые вопросы

Вопрос: По теореме Виета можно решить любые квадратные уравнения ?
Ответ: К сожалению, нет. Если в уравнении не целые корни или уравнение вообще не имеет корней, то теорема Виета не поможет. В этом случае надо пользоваться дискриминантом . К счастью, 80% уравнений в школьном курсе математике имеют целые решения.

Теорема Виета

Сумма корней приведённого квадратного уравнения

равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену

Если приведённое квадратное уравнение имеет вид

то его корни равны:

где D = p 2 — 4q. Чтобы доказать теорему, сначала найдём сумму корней:

а теперь найдём их произведение:

Равенства, показывающие зависимость между корнями и коэффициентами квадратного уравнения:

называются формулами Виета.

Теорема Виета применима к квадратным уравнениям только в том случае, если оно имеет два корня, поэтому, если дискриминант равен нулю, то принято считать, что уравнение имеет не один корень, а два равных корня. Таким образом, теорема Виета становится верна для любого квадратного уравнения, имеющего корни.

Обратная теорема

Если сумма двух чисел равна —p, а их произведение равно q, то эти числа являются корнями приведённого квадратного уравнения:

Это доказывает, что число x1 является корнем уравнения x 2 + px + q = 0. Точно так же можно доказать, что и число x2 является корнем для этого уравнения.

Решение примеров

Зависимость между корнями и коэффициентами квадратного уравнения позволяет в некоторых случаях находить корни уравнения устно, не используя формулу корней.

Пример 1. Найти корни уравнения:

Решение: так как

очевидно, что корни равны 1 и 2:

Подставив числа 1 и 2 в уравнение, убедимся, что корни найдены правильно:

1 2 — 3 · 1 + 2 = 0

2 2 — 3 · 2 + 2 = 0

Пример 2. Найти корни уравнения:

Методом подбора находим, что корни равны -3 и -5:

С помощью теоремы, обратной теореме Виета, можно составлять квадратное уравнение по его корням.

Пример 1. Составить квадратное уравнение по его корням:

Решение: так как x1 = -3, x2 = 6 корни уравнения x 2 + px + q = 0, то по теореме, обратной теореме Виета, составим уравнения:

Следовательно, искомое уравнение:

Пример 2. Записать приведённое квадратное уравнение, имеющее корни:

Теорема Виета

В математике существуют специальные приемы, с которыми многие квадратные уравнения решаются очень быстро и без всяких дискриминантов. Более того, при надлежащей тренировке многие начинают решать квадратные уравнения устно, буквально «с первого взгляда».

К сожалению, в современном курсе школьной математики подобные технологии почти не изучаются. А знать надо! И сегодня мы рассмотрим один из таких приемов — теорему Виета. Для начала введем новое определение.

Квадратное уравнение вида x 2 + bx + c = 0 называется приведенным . Обратите внимание: коэффициент при x 2 равен 1. Никаких других ограничений на коэффициенты не накладывается.

  1. x 2 + 7 x + 12 = 0 — это приведенное квадратное уравнение;
  2. x 2 − 5 x + 6 = 0 — тоже приведенное;
  3. 2 x 2 − 6 x + 8 = 0 — а вот это нифига не приведенное, поскольку коэффициент при x 2 равен 2.

Разумеется, любое квадратное уравнение вида ax 2 + bx + c = 0 можно сделать приведенным — достаточно разделить все коэффициенты на число a . Мы всегда можем так поступить, поскольку из определения квадратного уравнения следует, что a ≠ 0.

Правда, далеко не всегда эти преобразования будут полезны для отыскания корней. Чуть ниже мы убедимся, что делать это надо лишь тогда, когда в итоговом приведенном квадратом уравнении все коэффициенты будут целочисленными. А пока рассмотрим простейшие примеры:

Задача. Преобразовать квадратное уравнение в приведенное:

  1. 3 x 2 − 12 x + 18 = 0;
  2. −4 x 2 + 32 x + 16 = 0;
  3. 1,5 x 2 + 7,5 x + 3 = 0;
  4. 2 x 2 + 7 x − 11 = 0.

Разделим каждое уравнение на коэффициент при переменной x 2 . Получим:

  1. 3 x 2 − 12 x + 18 = 0 ⇒ x 2 − 4 x + 6 = 0 — разделили все на 3;
  2. −4 x 2 + 32 x + 16 = 0 ⇒ x 2 − 8 x − 4 = 0 — разделили на −4;
  3. 1,5 x 2 + 7,5 x + 3 = 0 ⇒ x 2 + 5 x + 2 = 0 — разделили на 1,5, все коэффициенты стали целочисленными;
  4. 2 x 2 + 7 x − 11 = 0 ⇒ x 2 + 3,5 x − 5,5 = 0 — разделили на 2. При этом возникли дробные коэффициенты.

Как видите, приведенные квадратные уравнения могут иметь целые коэффициенты даже в том случае, когда исходное уравнение содержало дроби.

Теперь сформулируем основную теорему, для которой, собственно, и вводилось понятие приведенного квадратного уравнения:

Теорема Виета . Рассмотрим приведенное квадратное уравнение вида x 2 + bx + c = 0. Предположим, что это уравнение имеет действительные корни x 1 и x 2. В этом случае верны следующие утверждения:

  1. x 1 + x 2 = − b . Другими словами, сумма корней приведенного квадратного уравнения равна коэффициенту при переменной x , взятому с противоположным знаком;
  2. x 1 · x 2 = c . Произведение корней квадратного уравнения равно свободному коэффициенту.

Примеры. Для простоты будем рассматривать только приведенные квадратные уравнения, не требующие дополнительных преобразований:

Теорема Виета дает нам дополнительную информацию о корнях квадратного уравнения. На первый взгляд это может показаться сложным, но даже при минимальной тренировке вы научитесь «видеть» корни и буквально угадывать их за считанные секунды.

Задача. Решите квадратное уравнение:

  1. x 2 − 9 x + 14 = 0;
  2. x 2 − 12 x + 27 = 0;
  3. 3 x 2 + 33 x + 30 = 0;
  4. −7 x 2 + 77 x − 210 = 0.

Попробуем выписать коэффициенты по теореме Виета и «угадать» корни:

  1. x 2 − 9 x + 14 = 0 — это приведенное квадратное уравнение.
    По теореме Виета имеем: x 1 + x 2 = −(−9) = 9; x 1 · x 2 = 14. Несложно заметить, что корни — числа 2 и 7;
  2. x 2 − 12 x + 27 = 0 — тоже приведенное.
    По теореме Виета: x 1 + x 2 = −(−12) = 12; x 1 · x 2 = 27. Отсюда корни: 3 и 9;
  3. 3 x 2 + 33 x + 30 = 0 — это уравнение не является приведенным. Но мы это сейчас исправим, разделив обе стороны уравнения на коэффициент a = 3. Получим: x 2 + 11 x + 10 = 0.
    Решаем по теореме Виета: x 1 + x 2 = −11; x 1 · x 2 = 10 ⇒ корни: −10 и −1;
  4. −7 x 2 + 77 x − 210 = 0 — снова коэффициент при x 2 не равен 1, т.е. уравнение не приведенное. Делим все на число a = −7. Получим: x 2 − 11 x + 30 = 0.
    По теореме Виета: x 1 + x 2 = −(−11) = 11; x 1 · x 2 = 30; из этих уравнений легко угадать корни: 5 и 6.

Из приведенных рассуждений видно, как теорема Виета упрощает решение квадратных уравнений. Никаких сложных вычислений, никаких арифметических корней и дробей. И даже дискриминант (см. урок «Решение квадратных уравнений») нам не потребовался.

Разумеется, во всех размышлениях мы исходили из двух важных предположений, которые, вообще говоря, не всегда выполняются в реальных задачах:

  1. Квадратное уравнение является приведенным, т.е. коэффициент при x 2 равен 1;
  2. Уравнение имеет два различных корня. С точки зрения алгебры, в этом случае дискриминант D > 0 — по сути, мы изначально предполагаем, что это неравенство верно.

Однако в типичных математических задачах эти условия выполняются. Если же в результате вычислений получилось «плохое» квадратное уравнение (коэффициент при x 2 отличен от 1), это легко исправить — взгляните на примеры в самом начале урока. Про корни вообще молчу: что это за задача, в которой нет ответа? Конечно, корни будут.

Таким образом, общая схема решения квадратных уравнений по теореме Виета выглядит следующим образом:

  1. Свести квадратное уравнение к приведенному, если это еще не сделано в условии задачи;
  2. Если коэффициенты в приведенном квадратном уравнении получились дробными, решаем через дискриминант. Можно даже вернуться к исходному уравнению, чтобы работать с более «удобными» числами;
  3. В случае с целочисленными коэффициентами решаем уравнение по теореме Виета;
  4. Если в течение нескольких секунд не получилось угадать корни, забиваем на теорему Виета и решаем через дискриминант.

Задача. Решите уравнение: 5 x 2 − 35 x + 50 = 0.

Итак, перед нами уравнение, которое не является приведенным, т.к. коэффициент a = 5. Разделим все на 5, получим: x 2 − 7 x + 10 = 0.

Все коэффициенты квадратного уравнения целочисленные — попробуем решить по теореме Виета. Имеем: x 1 + x 2 = −(−7) = 7; x 1 · x 2 = 10. В данном случае корни угадываются легко — это 2 и 5. Считать через дискриминант не надо.

Задача. Решите уравнение: −5 x 2 + 8 x − 2,4 = 0.

Смотрим: −5 x 2 + 8 x − 2,4 = 0 — это уравнение не является приведенным, разделим обе стороны на коэффициент a = −5. Получим: x 2 − 1,6 x + 0,48 = 0 — уравнение с дробными коэффициентами.

Лучше вернуться к исходному уравнению и считать через дискриминант: −5 x 2 + 8 x − 2,4 = 0 ⇒ D = 8 2 − 4 · (−5) · (−2,4) = 16 ⇒ . ⇒ x 1 = 1,2; x 2 = 0,4.

Задача. Решите уравнение: 2 x 2 + 10 x − 600 = 0.

Для начала разделим все на коэффициент a = 2. Получится уравнение x 2 + 5 x − 300 = 0.

Это приведенное уравнение, по теореме Виета имеем: x 1 + x 2 = −5; x 1 · x 2 = −300. Угадать корни квадратного уравнения в данном случае затруднительно — лично я серьезно «завис», когда решал эту задачу.

Придется искать корни через дискриминант: D = 5 2 − 4 · 1 · (−300) = 1225 = 35 2 . Если вы не помните корень из дискриминанта, просто отмечу, что 1225 : 25 = 49. Следовательно, 1225 = 25 · 49 = 5 2 · 7 2 = 35 2 .

Теперь, когда корень из дискриминанта известен, решить уравнение не составит труда. Получим: x 1 = 15; x 2 = −20.

Источники:

http://cos-cos.ru/math/92/

http://naobumium.info/algebra/teorema_vieta.php

http://www.berdov.com/docs/equation/vieta_theorem/

Читать еще:  Растворимые и нерастворимые в воде вещества. Что растворяется в воде
Ссылка на основную публикацию
Статьи на тему:

Adblock
detector