Какими свойствами обладает параллелограмм. Параллелограмм
Содержание
Параллелограмм и его свойства. Площадь параллелограмма. Биссектрисы углов параллелограмма
Параллелограмм — это четырехугольник, имеющий две пары параллельных сторон.
Свойства параллелограмма:
- Противоположные стороны параллелограмма равны.
- Противоположные углы параллелограмма равны.
- Диагонали параллелограмма в точке пересечения делятся пополам.
Давайте посмотрим, как свойства параллелограмма применяются в решении задач ЕГЭ.
1 . Найдите угол между биссектрисами углов параллелограмма, прилежащих к одной стороне. Ответ дайте в градусах.
Пусть и — биссектрисы углов параллелограмма, прилежащих к стороне . Сумма углов и равна . Углы и — половинки углов и . Значит, сумма углов и равна градусов. Из треугольника находим, что угол — прямой.
Ответ: .
Биссектрисы углов параллелограмма, прилежащих к одной стороне, — перпендикулярны.
Легко доказывается и другое свойство биссектрис параллелограмма:
Биссектрисы противоположных углов параллелограмма — параллельны.
Ты нашел то, что искал? Поделись с друзьями!
2. Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна . Найдите его большую сторону.
Найдем на этом рисунке накрест лежащие углы. Мы уже рассказывали, что это такое.
Углы и , а также и — накрест лежащие. Накрест лежащие углы равны. Значит, угол равен углу , а угол — углу .
Получаем, что треугольники и — равнобедренные, то есть , а . Тогда .
Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник.
, где — основание параллелограмма, — его высота.
, где и — стороны параллелограмма, — угол между ними.
И еще одна формула.
, где и — диагонали параллелограмма, — угол между ними.
Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)
Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.
Обучающее видео
БЕСПЛАТНО
Техническая поддержка:
help@ege-study.ru (круглосуточно)
Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!
Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.
Все поля обязательны для заполнения
Премиум
Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.
Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса — от 3,5 до 4,5 часов.
- Уравнения (задача 13)
- Стереометрия (задача 14)
- Неравенства (задача 15)
- Геометрия (задача 16)
- Финансовая математика (задача 17)
- Параметры (задача 18)
- Нестандартная задача на числа и их свойства (задача 19).
Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.
Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум — репетитор-профессионал Анна Малкова.
Получи пятерку
Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!
Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.
Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.
Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.
Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.
Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.
Задачи комплекта «Математические тренинги — 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.
Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.
Как пользоваться?
- Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
- Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
- Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
- Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
- Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.
Стоимость комплекта «Математические тренинги – 2019» — всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.
Это пробная версия онлайн курса по профильной математике.
Вы получите доступ к 3 темам, которые помогут понять принцип обучения, работу платформы и оценить ведущую курса Анну Малкову.
— 3 темы курса (из 50).
— Текстовый учебник с видеопримерами.
— Мастер-класс Анны Малковой.
— Тренажер для отработки задач.
Регистрируйтесь, это бесплатно!
Нажимая на кнопку, вы даете согласие на обработку своих персональных данных
Параллелограмм
Параллелограмм — это такой четырехугольник, у которого противоположные стороны являются попарно параллельными.
Разновидностями параллелограмма (частные случаи) являются квадрат, прямоугольник и ромб.
Содержание
Свойства параллелограмма
1. Противоположные стороны тождественны.
Первым делом проведем диагональ AC . Получаются два треугольника: ABC и ADC .
Так как ABCD — параллелограмм, то справедливо следующее:
AD || BC Rightarrow angle 1 = angle 2 как лежащие накрест.
AB || CD Rightarrow angle3 = angle 4 как лежащие накрест.
Следовательно, triangle ABC = triangle ADC (по второму признаку: angle 1 = angle 2, angle 3 = angle 4 и AC — общая).
И, значит, triangle ABC = triangle ADC , то AB = CD и AD = BC .
2. Противоположные углы тождественны.
Согласно доказательству свойства 1 мы знаем, что angle 1 = angle 2, angle 3 = angle 4 . Таким образом сумма противоположных углов равна: angle 1 + angle 3 = angle 2 + angle 4 . Учитывая, что triangle ABC = triangle ADC получаем angle A = angle C , angle B = angle D .
3. Диагонали разделены пополам точкой пересечения.
Проведем еще одну диагональ.
По свойству 1 мы знаем, что противоположные стороны тождественны: AB = CD . Еще раз отметим накрест лежащие равные углы.
Таким образом видно, что triangle AOB = triangle COD по второму признаку равенства треугольников (два угла и сторона между ними). То есть, BO = OD (напротив углов angle 2 и angle 1 ) и AO = OC (напротив углов angle 3 и angle 4 соответственно).
Признаки параллелограмма
Если лишь один признак в вашей задаче присутствует, то фигура является параллелограммом и можно использовать, все свойства данной фигуры.
Для лучшего запоминания, заметим, что признак параллелограмма будет отвечать на следующий вопрос — «как узнать?». То есть, как узнать, что заданная фигура это параллелограмм.
1. Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны.
AB = CD ; AB || CD Rightarrow ABCD — параллелограмм.
Рассмотрим подробнее. Почему AD || BC ?
triangle ABC = triangle ADC по свойству 1: AB = CD , AC — общая и angle 1 = angle 2 как накрест лежащие при параллельных AB и CD и секущей AC .
Но если triangle ABC = triangle ADC , то angle 3 = angle 4 (лежат напротив AB и CD соответственно). И следовательно AD || BC ( angle 3 и angle 4 — накрест лежащие тоже равны).
Первый признак верен.
2. Параллелограммом является такой четырехугольник, у которого противоположные стороны равны.
AB = CD , AD = BC Rightarrow ABCD — параллелограмм.
Рассмотрим данный признак. Еще раз проведем диагональ AC .
По свойству 1 triangle ABC = triangle ACD .
Из этого следует, что: angle 1 = angle 2 Rightarrow AD || BC и angle 3 = angle 4 Rightarrow AB || CD , то есть ABCD — параллелограмм.
Второй признак верен.
3. Параллелограммом является такой четырехугольник, у которого противоположные углы равны.
angle A = angle C , angle B = angle D Rightarrow ABCD — параллелограмм.
2 alpha + 2 beta = 360^
Получается, alpha + beta = 180^
И то, что alpha + beta = 180^
При этом alpha и beta — внутренние односторонние при секущей AD . И это значит AB || CD .
Третий признак верен.
4. Параллелограммом является такой четырехугольник, у которого диагонали разделены точкой пересечения пополам.
AO = OC ; BO = OD Rightarrow параллелограмм.
BO = OD ; AO = OC , angle 1 = angle 2 как вертикальные Rightarrow triangle AOB = triangle COD , Rightarrow angle 3 = angle 4 , и Rightarrow AB || CD .
Аналогично BO = OD ; AO = OC , angle 5 = angle 6 Rightarrow triangle AOD = triangle BOC Rightarrow angle 7 = angle 8 , и Rightarrow AD || BC .
Источники:
http://ege-study.ru/ru/ege/materialy/matematika/parallelogramm-ego-svojstva-i-ploshhad/
http://academyege.ru/page/parallelogramm.html