Как решать многоуровневые дроби. Как решать дроби

umath.ru

Изучаем математику вместе!

Дроби, операции с дробями

Дробь — форма представления числа в математике. Дробная черта обозначает операцию деления. Числителем дроби называется делимое, а знаменателем — делитель. Например, в дроби числителем является число 5, а знаменателем — 7.

Правильной называется дробь, у которой модуль числителя больше модуля знаменателя. Если дробь является правильной, то модуль её значения всегда меньше 1. Все остальные дроби являются неправильными.

Дробь называют смешанной, если она записана как целое число и дробь. Это то же самое, что и сумма этого числа и дроби:

Основное свойство дроби

Если числитель и знаменатель дроби умножить на одно и то же число, то значение дроби не изменится, то есть, например,

Приведение дробей к общему знаменателю

Чтобы привести две дроби к общему знаменателю, нужно:

  1. Числитель первой дроби умножить на знаменатель второй
  2. Числитель второй дроби умножить на знаменатель первой
  3. Знаменатели обеих дробей заменить на их произведение

Действия с дробями

Сложение. Чтобы сложить две дроби, нужно

  1. Привести дроби к общему знаменателю
  2. Сложить новые числители обеих дробей, а знаменатель оставить без изменений

Вычитание. Чтобы вычесть одну дробь из другой, нужно

  1. Привести дроби к общему знаменателю
  2. Вычесть из числителя первой дроби числитель второй, а знаменатель оставить без изменений

Умножение. Чтобы умножить одну дробь на другую, следует перемножить их числители и знаменатели:

Деление. Чтобы разделить одну дробь на другую, следует числитель первой дроби умножить на знаменатель второй, а знаменатель первой дроби умножить на числитель второй:

Как решать дроби. Решение дробей.

В статье покажем, как решать дроби на простых понятных примерах. Разберемся, что такое дробь и рассмотрим решение дробей!

Понятие дроби вводится в курс математики начиная с 6 класса средней школы.

Дроби имеют вид : ±X/Y, где Y – знаменатель, он сообщает на сколько частей разделили целое, а X – числитель, он сообщает, сколько таких частей взяли. Для наглядности возьмем пример с тортом:

В первом случае торт разрезали поровну и взяли одну половину, т.е. 1/2. Во втором случае торт разрезали на 7 частей, из которых взяли 4 части, т.е. 4/7.

Читать еще:  Вопросы задаваемые на детекторе лжи. Как проходит тестирование

Если часть от деления одного числа на другое не является целым числом, ее записывают в виде дроби.

Например, выражение 4:2 = 2 дает целое число, а вот 4:7 нацело не делится, поэтому такое выражение записывается в виде дроби 4/7.

Иными словами дробь — это выражение, которое обозначает деление двух чисел или выражений, и которое записывается с помощью дробной черты.

Если числитель меньше знаменателя – дробь является правильной, если наоборот – неправильной. В состав дроби может входить целое число.

Например, 5 целых 3/4.

Данная запись означает, что для того, чтобы получить целую 6 не хватает одной части от четырех.

Если вы хотите запомнить, как решать дроби за 6 класс, вам надо понять, что решение дробей, в основном, сводится к понимаю нескольких простых вещей.

  • Дробь по сути это выражение доли. То есть числовое выражение того, какую часть составляет данное значение от одного целого. К примеру дробь 3/5 выражает, что, если мы поделили что то целое на 5 частей и количество долей или частей это этого целого – три.
  • Дробь может быть меньше 1, например 1/2(или по сути половина), тогда она правильная. Если дробь больше 1, к примеру 3/2(три половины или один с половиной), то она неправильная и для упрощения решения, нам лучше выделить целую часть 3/2= 1 целая 1/2.
  • Дроби это такие же числа, как 1, 3, 10, и даже 100, только числа это не целые а дробные. С ними можно выполнять все те же операции, что с числами. Считать дроби не сложнее, и далее на конкретных примерах мы это покажем.

Как решать дроби. Примеры.

К дробям применимы самые разные арифметические операции.

Приведение дроби к общему знаменателю

Например, необходимо сравнить дроби 3/4 и 4/5.

Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей

Читать еще:  Сонник сильный ветер на море. Ветер с дождем

Наименьший общий знаменатель(4,5) = 20

Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю


Ответ: 15/20 Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Должна признаться, что решать дроби – это мое самое любимое математическое действие. Это тема, которую я понимаю без вопросов. Можно сказать, хлебом не корми, дай только дроби порешать )))

Дроби я тоже люблю. Умножать и делить их – милое дело. Вообще мне кажется, что с решением дробей мало у кого могут быть проблемы, потому что все довольно просто. Есть в математике огромное количество гораздо более сложных вещей, чем дроби решать.

Я вообще не умею решать дроби, но понятие немного есть. И поэтому стараюсь как можно скорее научиться решать дроби как дважды два четыре. Мне легче с формулами сложные примеры решить чем решать дроби!

Полезно бывает вспомнить то, что проходилось в школе когда-то и частично забыто. Да и я лично для себя несколько моментов новых открыл и очень рад. Правда появился еще вопрос по поводу того, изменилось ли что-то в данном случае или же нет? Потому что я не все помню и есть четкое мнение, что изменились уравнения уже.

Всегда любила я дробить числа. А тут оказывается и вообще проще простого все это сделать можно, имея просто одно целое значение, которое не настолько и сложно просто поделить на частички, которые и будут нужны.

Вроде бы все просто, а вот на примере с вычитанием 1/4 я расстерялся. Вот такие преобразования дроби для вычитания меня сбивают с толку.

Так это еще слишком простые дроби здесь на примерах представлены. Я как заглянула в экзаменационные задания чуть не померла, сама такое не решу никогда.

Вы видео смотрели?! Мне лично очень понравилось, доступно, подробно, но кратко. Таким и должны быть математические видео-уроки.

Согласен, видео хорошее, а вообще решение дробей не самое сложное в математике!

Читать еще:  История происхождения и толкование имени радмира. Значение имени ратмир

ну что поделаешь и помирать от этого не надо просто дроби надо решать и не коких проблем не будет
и все будет нормально

Вот честно говоря, если бы я не знала что такое дроби и как решить с ними примеры, посмотрев видео,я бы не поняла что к чему.
(Знаю что и как решать,просто хотела вспомнить)

Памятка – карточка “Многоэтажные дроби” для учащихся 6-11 классов.

Эмоциональное выгорание педагогов. Профилактика и способы преодоления

Как отличить простую усталость от профессионального выгорания?

Можно ли избежать переутомления?

Многоэтажные дроби

В старших классах зачастую встречаются трехэтажные (или больше) дроби. Пример:

Чтобы привести такую дробь к привычному виду, используют деление через 2 точки:

Обратите внимание! В делении дробей очень важен порядок деления.

Будьте внимательны, здесь легко запутаться. Обратите внимание, например:

При делении единицы на любую дробь, результатом будет та же самая дробь, только перевернутая:

Если пример содержит только действия II ступени, то их удобно выполнить под одной дробной чертой.

При вычислениях многоэтажных дробей часто удобно числитель и знаменатель записать в виде натуральных чисел. Для этого надо:

1) Найти НОК знаменателей в выражении многоэтажной дроби;

2) числитель и знаменатель многоэтажной дроби умножить на НОК их знаменателей, в результате записать числитель и знаменатель дроби целыми числами;

3) выполнить действия над целыми числами.

Образец: переход к натуральным числам

=

1) 3) = =

2) 4)

Пример (1) проще решить по действиям.

В примере (2) НОК находят устно, расставляют доп. множители, выполняют действия с натуральными числами по условию.

1. 1) 2) 3) 4) 5) 6) 7) 8)

2. 1) 2) 3) 4) 5) 6) 7) 8)

3. 1) 2) 3) 4) 5) 6) 7) 8)

4. 1) 2) 3) 4) 5) 6) 7)

5. 1) 2) 3 – 3) 7 – 4) 9 – 5) 1 – 6) 3 – 7) 1 +

6. 1) 1 + 2) 1 + 3) 4) 5)

Источники:

Дроби, операции с дробями

http://reshit.ru/kak_reshat_drobi

http://infourok.ru/pamyatka-kartochka-mnogoetazhnie-drobi-dlya-uchaschihsya-klassov-870209.html

Ссылка на основную публикацию
Статьи на тему: