5 показательная функция. Показательная функция, ее свойства и график

Показательная функция – свойства, графики, формулы

Определение

Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3. , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (см. ниже ⇓), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где – произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .

Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции».

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел ( ) :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

Графики показательной функции

На рисунке представлены графики показательной функции
y ( x ) = a x
для четырех значений основания степени: a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0

Читать еще:  К чему приснилось петь во сне? К чему снится петь.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных:
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку – это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 – это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z:
f ( z ) = a z
где z = x + iy ; i 2 = – 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда

.
Аргумент φ определен не однозначно. В общем виде
φ = φ + 2 πn ,
где n – целое. Поэтому функция f ( z ) также не однозначна. Часто рассматривают ее главное значение
.

Разложение в ряд

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов . Опубликовано: 21-02-2014 Изменено: 19-11-2018

Тема урока: «Показательная функция, ее свойства и график»

Разделы: Математика

Цели:

  • ввести определение показательной функции;
  • сформулировать её основные свойства;
  • показать построение графиков функции

Концентрация внимания:

Концентрацию внимания определить следующим образом — число воспроизведённых цифр умножить на 0,1 и полученное произведение выразить в процентах.

Определение. Функция вида называется показательной функцией.

Замечание. Исключение из числа значений основания a чисел 0; 1 и отрицательных значений a объясняется следующими обстоятельствами:

Построить графики функций: и .

Когда заполняется таблица, то параллельно с заполнением решаются задания.

Задание № 1. (Для нахождения области определения функции).

Какие значения аргумента являются допустимыми для функций:

Задание № 2. (Для нахождения области значений функции).

На рисунке изображен график функции. Укажите область определения и область значений функции:

Задание № 3. (Для указания промежутков сравнения с единицей).

Читать еще:  Оглушение согласных в конце слова. Профилактика нарушения письменной речи

Каждую из следующих степеней сравните с единицей:

Задание № 4. (Для исследования функции на монотонность).

Сравнить по величине действительные числа m и n если:

Задание № 5. (Для исследования функции на монотонность).

Сделайте заключение относительно основания a, если:

В одной координатной плоскости построены графики функций:

y(x) = 10 x ; f(x) = 6 x ; z(x) — 4 x

Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x 0

В одной координатной плоскости построены графики функций:

y(x) = (0,1) x ; f(x) = (0,5) x ; z(x) = (0,8) x .

Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x 0

Число e играет особую роль в математическом анализе. Показательная функция с основанием e, называется экспонентой и обозначается y = e x .

Первые знаки числа e запомнить несложно: два, запятая, семь, год рождения Льва Толстого — два раза, сорок пять, девяносто, сорок пять.

Колмогоров п. 35; № 445-447; 451; 453.

Повторить алгоритм построения графиков функций, содержащих переменную под знаком модуля.

Показательная функция, ее свойства. Простейшие показательные уравнения

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На данном уроке мы рассмотрим показательную функцию, ее график и основные свойства. Также научимся решать простейшие показательные уравнения.

Если у вас возникнет сложность в понимании тему, рекомендуем посмотреть урок «Показательная функция и логарифм»

1. Определение показательной функции, свойства, графики

Рассмотрим основное определение.

Определение:

Функцию вида , где и называют показательной функцией.

Например: и т. д.

Рассмотрим первый случай, когда основание степени больше единицы: :

Рис. 1. График показательной функции, основание степени больше единицы

Основные свойства данного семейства функций:

Область определения: ;

Область значений: ;

Функция возрастает, т. е. большему значению аргумента соответствует большее значение функции;

Если аргумент стремится к минус бесконечности, функция стремится к нулю, если аргумент стремится к плюс бесконечности функция стремится также к плюс бесконечности.

Рассмотрим второй случай, когда основание степени меньше единицы :

Например: и т. д.

Рис. 2. График показательной функции, основание степени меньше единицы

Свойства данного семейства функций:

Область определения: ;

Область значений: ;

Функция убывает, т. е. большему значению аргумента соответствует меньшее значение функции;

Читать еще:  Формула разложения и сочетания. Комбинаторика

Если аргумент стремится к минус бесконечности, функция стремится к плюс бесконечности, если аргумент стремится к плюс бесконечности функция стремится к нулю.

2. Решение элементарных показательных уравнений и неравенств

Решение показательных уравнений и неравенств основывается на свойствах показательной функции.

Пример 1 – решить уравнение:

а)

Ответ: , т. к. показательная функция принимает строго положительные значения.

б)

Ответ: , т. к. показательная функция принимает строго положительные значения.

Пример 2 – решить неравенство:

а)

Ответ: , т. к. показательная функция принимает строго положительные значения.

б)

Ответ: , т. к. показательная функция принимает строго положительные значения.

Рис. 3. Иллюстрация к примеру 2.б

3. Простейшие показательные уравнения в общем виде, конкретные примеры

Рассмотрим простейшие уравнения и неравенства.

а) (рисунок 4)

б) , т. к. функция монотонно возрастает на всей области определения (рисунок 4)

Рис. 4. Иллюстрация к примеру 3

Рассмотрим простейшие показательные уравнения в общем виде.

Равенство показателей степени при равных основаниях обусловлено свойством показательной функции, а именно ее монотонностью. Это означает, что каждое свое значение функция приобретает при единственном значении аргумента.

Таким образом, получаем методику решения показательных уравнений:

Уравнять основания степеней;

Приравнять показатели степеней;

Пример 4 – решить уравнения:

а)

б)

Итак, мы рассмотрели показательную функцию, ее график и свойства, научились решать простейшие показательные уравнения и неравенства, рассмотрели простейшие показательные уравнения в общем виде. В следующем уроке мы рассмотрим решение показательных неравенств.

Список литературы

  1. Мордкович А.Г. Алгебра и начала математического анализа. – М.: Мнемозина.
  2. Муравин Г.К., Муравина О.В. Алгебра и начала математического анализа. – М.: Дрофа.
  3. Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала математического анализа. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

1. Алгебра и начала анализа, 10–11 класс (А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын) 1990, № 446, 453, 460, 461;

2. Решить неравенство:

а) ; б) ; в) ; г) ;

3. Решить уравнение:

а) ; б) ; в) ; г) ;

Источники:

http://1cov-edu.ru/mat_analiz/funktsii/pokazatelnaya/

http://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/412218/

http://interneturok.ru/lesson/algebra/11-klass/pokazatelnaya-i-logarifmicheskaya-funktsii/pokazatelnaya-funktsiya-ee-svoystva-prosteyshie-pokazatelnye-uravneniya

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector
×
×
×
×