Практическое значение процессов электролиза закон фарадея. Законы фарадея
Электролиз. Законы Фарадея
Электролизом называют процессы, протекающие на электродах под действием электрического тока, подаваемого от внешнего источника тока через электролиты.
При электролизе на электродах непрерывно протекают окислительно-восстановительные реакции. На катоде (К(-)) происходит процесс восстановления, на аноде (А(+)) – процесс окисления. Продукты этих реакций или откладываются на электродах, или вступают во вторичные реакции (взаимодействуют между собой, с молекулами растворителя или с веществом электрода), или накапливаются в растворе у электродов. Течение первичных анодных и катодных реакций подчиняется законам Фарадея.
Первый закон Фарадея: масса вещества m, выделяемая на электроде электрическим током, пропорциональная количеству электричества Q, прошедшему через электролит:
m = kQ, но Q =It (9.16)
где I – сила тока, А; t – время пропускание тока, с.
k – коэффициент пропорциональности, равный количеству вещества, выделяемого при прохождении одного кулона (Кл) электричества (электрохимический эквивалент).
Второй закон Фарадея: массы различных веществ, выделенных одним и тем же количеством электричества, пропорциональных их химическим эквивалентам (Мэ):
Для выделения 1 грамма эквивалента вещества требуется пропустить через электролит одно и тоже количество электричества, равное приблизительно 96500 Кл (число Фарадея). Следовательно:
Подставив последнее уравнение в (9.17), получим формулу, объединяющую оба закона Фарадея.
(9.18)
Соотношение (9.18) используют в расчетах процессов при электролизе. При практическом проведении электролиза всегда некоторая часть электрической энергии затрачивается на побочные процессы. Важной характеристикой рентабельности установки для проведения электролиза (электролизера) является выход по току (h, %):
h = (9.19)
где mпр – масса фактически выделенного вещества; mтеор – масса вещества, которая должна была выделиться в соответствии с законом Фарадея.
На процесс электролиза существенно влияет плотность тока, то есть сила тока, приходящаяся на единицу рабочей поверхности электрода.
Рассмотрим процессы, протекающие на катоде и аноде. Если электролиз идет в расплаве соли, то на катоде выделяется металл, а на аноде газ аниона.
Например, электролиз расплава хлорида натрия приводит к восстановлению ионов Na + до металлического натрия на катоде (отрицательном электроде)
и окислению хлорид ионов Cl – до газообразного хлора на аноде (положительном электроде)
NaClNa + 1/2 Cl2.
Если электролиз идет в растворе соли, то помимо катиона металла и аниона в растворе находятся ионы H + и OH + :
При наличии нескольких видов ионов или недиссоциированных молекул электрохимически активных веществ возможно протекание нескольких электродных реакций. На катоде, прежде всего, протекает реакция с наиболее положительным потенциалом. Поэтому при катодном восстановлении возможно три случая:
Катионы металлов, стоящие в ряду напряжения от Li + до Al 3+ включительно не восстанавливаются на катоде, вместо них выделяется водород:
Катионы металлов, находящиеся в ряду напряжения от Al 3+ до H + (включительно) восстанавливаются одновременно с молекулами воды, что связано с более высокой поляризацией (перенапряжением) при выделении водорода, чем поляризацией (перенапряжением) разряда многих металлов:
Катионы металлов, стоящие в ряду напряжения после водорода полностью восстанавливаются на катоде:
На аноде в первую очередь реагируют наиболее сильные восстановители – вещества, имеющие наиболее отрицательные потенциалы.
На нерастворимом аноде (уголь, графит, платина, иридий) анионы кислородсодержащих кислот не окисляются, а окисляется вода с образованием кислорода:
Анионы бескислородных кислот (Cl – , I – , Br – , S 2- и т.д.) окисляются до простых веществ (Cl2, I2, Br2, S и т. д.) при высокой плотности тока. При малой плотности тока выделяется только кислород, а при выравнивании потенциала и
протекают обе реакции.
На растворимом аноде идет процесс растворения самого анода, например, Сu +- 2e ® Cu 2+ .
Электролиз применяют в:
1) металлургии для получения меди, цинка, кобальта, марганца и других металлов;
2) в химической промышленности электролизом получают газообразный хлор, водород, кислород, щелочи, окислители (пероксид водорода, перманганат калия, хлораты и другие);
3) получение гальванопокрытий: никелирование, меднение, цинкование, хромирование;
4) электрохимическая анодная обработка металлов и сплавов для придания изделиям определенной формы.
109.201.137.33 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Законы Фарадея
Законы электролиза
При прохождении электрического тока через электролиты происходит процесс разложения вещества, который называют электролизом. При этом проводники, которые погружены в раствор, называют анодом (положительный электрод) и катодом (отрицательный электрод).
При помощи электролиза получают различные вещества, например, хлор, фтор, щелочи и т.д. При помощи данного процесса производят переработку сырья, которое содержит металлы, очищают металлы. Используя процессы электролиза, наносят тонкие металлические покрытия на разные металлические поверхности.
Формулировка первого закона Фарадея
Масса вещества, которое выделяется на электроде, прямо пропорциональна заряду, который прошел через электролит. В виде формулы данный закон можно представить как:
где — полный заряд, который проходит через электролит, за времяt.
— сила тока.
— коэффициент пропорциональности (электрохимический эквивалент вещества (
)), равный массе вещества, которая выделится при прохождении через электролит заряда равного 1 Кл. Величина
является характеристикой вещества.
Первый закон для электролиза был получен Фарадеем экспериментально.
Формулировка второго закона Фарадея
Электрохимический эквивалент пропорционален молярной массе вещества () и обратно пропорционален величине его химической валентности (
). В математическом виде второй закон Фарадея записывают как:
где Кл/моль — постоянная Фарадея, полученная эмпирически. Величину
называют химическим эквивалентом вещества, она показывает, какая масса вещества требуется для замещения одного моля водорода в химических соединениях.
Иногда второй закон Фарадея формулируют так:
Электрохимические эквиваленты веществ пропорциональны их химическим эквивалентам.
Второй закон Фарадея также относят к эмпирическим законам.
Объединенный закон Фарадея для электролиза
Объединенный закон Фарадея записывают в виде:
Физический смысл выражения (3) заключен в том, что постоянная Фарадея количественно равна заряду, который следует пропустить через всякий электролит для того, чтобы на электродах выделилось вещество в количестве, равном одному химическому эквиваленту.
Примеры решения задач
Для водорода выражение (1.1) запишем как:
для хлора формула (1.1) будет иметь вид:
Приравняем правые части выражений (1.2) и (1.3), получим:
Вычислим искомый эквивалент:
где для меди в данном соединении, молярная масса меди может считаться известной.
Силу тока можно рассчитать как:
Перепишем закон Фарадея в виде:
где — плотность меди (будем считать известной величиной).
Приравняем правые части выражений (2.3) и (2.4), выразим искомую толщину:
Законы электролиза Фарадея
Законы электролиза Фарадея представляют собой количественные соотношения, основанные на электрохимических исследованиях Майкла Фарадея, которые он опубликовал в 1836 году.
Майкл Фарадей (1791 – 1867)
Данные законы определяют связь между количеством веществ, выделяющихся при электролизе и количеством электричества, которое прошло при этом через электролит. Законов Фарадея два. В научной литературе и в учебниках встречаются различные формулировки данных законов.
Первый закон электролиза Фарадея
Масса вещества, которое осядет на электроде при электролизе, прямо пропорциональна количеству электричества, переданного к этому электроду (прошедшего через электролит). Под количеством электричества понимается количество электрического заряда, который обычно измеряется в кулонах.
Второй закон электролиза Фарадея
Для определенного количества электричества (электрического заряда) масса химического элемента, который осядет на электроде при электролизе, прямо пропорциональна эквивалентной массе данного элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.
Одно и то же количество электричества приводит к выделению на электродах при электролизе эквивалентных масс различных веществ. Для выделения одного моля эквивалента любого вещества необходимо затратить одно и то же количество электричества, а именно 96485 Кл. Данная электрохимическая константа называется числом Фарадея.
Законы Фарадея в математической форме
m – масса вещества, осевшего на электроде ;
Q – величина полного электрического заряда в кулонах, который прошел при электролизе ;
F = 96485,33(83) Кл/моль — число Фарадея ;
M- молярная масса элемента в г/моль ;
z – валентное число ионов вещества (электронов на ион) ;
M/z – эквивалентная масса осевшего на электроде вещества .
Применительно к первому закону электролиза Фарадея, M, F и z – константы, поэтому чем больше будет Q, тем больше окажется и m.
Применительно ко второму закону электролиза Фарадея, Q, F и z – константы, поэтому чем больше будет M/z, тем больше окажется m.
Для постоянного тока имеем
n – количество молей (количество вещества), выделенного на электроде: n = m/M.
t – время прохождения постоянного тока через электролит Для переменного тока суммируется полный заряд за время .
t – полное время электролиза.
Пример применения законов Фарадея
Необходимо записать уравнение электрохимических процессов на катоде и аноде при электролизе водного раствора сульфата натрия при инертном аноде. Решение задачи будет таким. В растворе сульфат натрия станет диссоциировать по такой схеме:
Стандартный электродный потенциал в данной системе таков:
Это значительно более отрицательный уровень потенциала нежели для водородного электрода в нейтральной среде (-0,41 В). Поэтому на отрицательном электроде (катоде) начнет протекать электрохимическая диссоциация воды с выделением водорода и гидроксид-иона по следующей схеме:
А положительно заряженные ионы натрия, подходящие к отрицательно заряженному катоду, станут скапливаться возле катода, в прилегающей к нему части раствора.
На положительном электроде (аноде) будет протекать электрохимическое окисление воды, что приведет к выделению кислорода, по следующей схеме:
В данной системе стандартный электродный потенциал +1,23 В, что сильно ниже стандартного электродного потенциала, характерного для следующей системы:
Отрицательно заряженные сульфат-ионы, бегущие к положительно заряженному аноду, станут скапливаться в пространстве возле анода.
Источники:
http://studopedia.ru/3_78028_elektroliz-zakoni-faradeya.html
http://electricalschool.info/spravochnik/electroteh/2224-zakony-elektroliza-faradeya.html