Технические, биологические и др. Системы
Детерминированные и стохастические системы;
Технические, биологические и др. системы
Классификация информационных систем
Виды информационных систем
Классификация ИС: по виду формализованного аппарата представления (детерминированные, стохастические); по сложности структуры и поведения; по степени организованности («хорошо» и «плохо» организованные, самоорганизующиеся).
Системы разделяются на классы по различным признакам, и в зависимости от решаемой задачи можно выбрать разные принципы классификации. При этом систему можно охарактеризовать одним или несколькими признаками. Системы классифицируются следующим образом:
по виду отображаемого объекта—технические, биологические и др.;
по виду научного направления — математические, физические, химические и т. п.;
по виду формализованного аппарата представления системы — детерминированные и стохастические;
по типу целеустремленности — открытые и закрытые;
по сложности структуры и поведения—простые и сложные;
по степени организованности — хорошо организованные, плохо организованные (диффузные), самоорганизующиеся системы.
Классификации всегда относительны. Так в детерминированной системе можно найти элементы стохастических систем.
Цель любой классификации ограничить выбор подходов к отображению системы и дать рекомендации по выбору методов.
Технические системы. Параметрами технических объектов являются движущие объекты, объекты энергетики, объекты химической промышленности, объекты машиностроения, бытовая техника и многие другие. Объекты технических систем хорошо изучены в теории управления.
Экономические объекты. Экономическими объектами являются: цех, завод, предприятия различных отраслей. В качестве одной из переменных в них выступают экономические показатели – например – прибыль.
Биологические системы. Живые системы поддерживают свою жизнедеятельность благодаря заложенным в них механизмам управления.
Если внешние воздействия, приложенные к системе (управляющие и возмущающие) являются определенными известными функциями времени u=f(t). В этом случае состоянии системы описываемой обыкновенными дифференциальными уравнениями, в любой момент времени t может быть однозначно описано по состоянию системы в предшествующий момент времени. Системы для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого момента времени называются детерминированными.
Стохастические системы – системы изменения в которых носят случайный характер. Например воздействие на энергосистему различных пользователей. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.
Случайные воздействия могут прикладываться к системе из вне, или возникать внутри некоторых элементов (внутренние шумы). Исследование систем при наличии случайных воздействий можно проводить обычными методами, минимизировав шаг моделирования чтобы не пропустить влияния случайных параметров. При этом так как максимальное значение случайной величины встречается редко (в основном в технике преобладает нормальное распределение), то выбор минимального шага в большинстве моментов времени не будет обоснован.
В подавляющем большинстве случаев при проектировании систем закладываются не максимальным а наиболее вероятным значением случайного параметра. В этом случае поучается более рациональная система, заранее предполагая ухудшение работы системы в отдельные промежутки времени. Например установка катодной защиты.
Расчет систем при случайных воздействиях производится с помощью специальных статистических методов. Вводятся оценки случайных параметров, выполненные на основании множества испытаний. Например карта поверхности уровня грунтовых вод СПб.
Статистические свойства случайной величины определяют по ее функции распределения или плотности вероятности.
Технические, биологические и др. Системы
Технические системы. Параметрами технических объектов являются движущие объекты, объекты энергетики, объекты химической промышленности, объекты машиностроения, бытовая техника и многие другие. Объекты технических систем хорошо изучены в теории управления.
Экономические объекты. Экономическими объектами являются: цех, завод, предприятия различных отраслей. В качестве одной из переменных в них выступают экономические показатели – например – прибыль.
Биологические системы. Живые системы поддерживают свою жизнедеятельность благодаря заложенным в них механизмам управления.
Детерминированные и стохастические системы
Если внешние воздействия, приложенные к системе (управляющие и возмущающие) являются определенными известными функциями времени u=f(t). В этом случае состоянии системы описываемой обыкновенными дифференциальными уравнениями, в любой момент времени t может быть однозначно описано по состоянию системы в предшествующий момент времени. Системы для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого момента времени называются детерминированными.
Стохастические системы – системы изменения в которых носят случайный характер. Например воздействие на энергосистему различных пользователей. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.
Случайные воздействия могут прикладываться к системе из вне, или возникать внутри некоторых элементов (внутренние шумы). Исследование систем при наличии случайных воздействий можно проводить обычными методами, минимизировав шаг моделирования чтобы не пропустить влияния случайных параметров. При этом так как максимальное значение случайной величины встречается редко (в основном в технике преобладает нормальное распределение), то выбор минимального шага в большинстве моментов времени не будет обоснован.
В подавляющем большинстве случаев при проектировании систем закладываются не максимальным а наиболее вероятным значением случайного параметра. В этом случае поучается более рациональная система, заранее предполагая ухудшение работы системы в отдельные промежутки времени. Например установка катодной защиты.
Расчет систем при случайных воздействиях производится с помощью специальных статистических методов. Вводятся оценки случайных параметров, выполненные на основании множества испытаний. Например карта поверхности уровня грунтовых вод СПб.
Статистические свойства случайной величины определяют по ее функции распределения или плотности вероятности.
Открытые и закрытые системы
Понятие открытой системы ввел Л. фон Берталанфи. Основные отличительные черты открытых систем – способность обмениваться с внешней средой энергией и информацией. Закрытые (замкнутые) системы изолированны от внешней среды (с точностью принятой в модели).
Хорошо и плохо организованные системы
Хорошо организованные системы. Представить анализируемый объект или процесс в виде «хорошо организованной системы» означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты, т. е. определить связи между всеми компонентами и целями системы, с точки зрения которых рассматривается объект или ради достижения которых создается система. Проблемная ситуация может быть описана в виде математического выражения, связывающего цель со средствами, т. е. в виде критерия эффективности, критерия функционирования системы, который может быть представлен сложным уравнением или системой уравнений. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.
Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).
Для отображения объекта в виде хорошо организованной системы необходимо выделять существенные и не учитывать относительно несущественные для данной цели рассмотрения компоненты: например, при рассмотрении солнечной системы не учитывать метеориты, астероиды и другие мелкие по сравнению с планетами элементы межпланетного пространства.
Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.
Плохо организованные системы. При представлении объекта в виде «плохо организованной или диффузной системы» не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенней с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой доверительной вероятностью.
Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслуживания, определении численности штатов на предприятиях и учреждениях, исследовании документальных потоков информации в системах управления и т. д.
Самоорганизующиеся системы. Отображение объекта в виде самоорганизующейся системы — это подход, позволяющий исследовать наименее изученные объекты и процессы. Самоорганизующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных параметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к изменяющимся условиям среды, изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности; способность формировать возможные варианты поведения и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприспосабливающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и другие подклассы, соответствующие различным свойствам развивающихся систем.
Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т. е. в тех системах, где обязательно имеется человеческий фактор.
При применении отображения объекта в виде самоорганизующейся системы задачи определения целей и выбора средств, как правило, разделяются. При этом задача выбора целей может быть, в свою очередь, описана в виде самоорганизующейся системы, т. е. структура функциональной части АСУ, структура целей, плана может разбиваться так же, как и структура обеспечивающей части АСУ (комплекс технических средств АСУ) или организационная структура системы управления.
Большинство примеров применения системного анализа основано на представлении объектов в виде самоорганизующихся систем.
Любому реальному процессу свойственны случайные колебания, вызываемые физической изменчивостью каких- либо факторов во времени. Кроме того, могут существовать случайные внешние воздействия на систему. Поэтому при равном среднем значении входных в параметров в различные моменты времени выходные параметры будут неодинаковы. Следовательно, если случайные воздействия на исследуемую систему существенны, необходимо разрабатывать вероятностную (стохастическую) модель объекта, учитывая статистические законы распределения параметров системы и выбирая соответствующий математический аппарат.
При построении детерминированных моделей случайными факторами пренебрегают, учитывая лишь конкретные условия решаемой задачи, свойства и внутренние связи объекта (по этому принципу построены практически все разделы классической физики)
Идея детерминистических методов – в использовании собственной динамики модели при эволюции системы.
В нашем курсе эти методы представляют: метод молекулярной динамики , преимуществами которого являться: точность и определенность численного алгоритма; недостатком – трудоемкость из- за подсчета сил взаимодействия между частицами (для системы N частиц на каждом шаге нужно выполнить операций подсчета этих сил).
При детерминистическом подходе задаються, и интегрируются по времени уравнения движения. Мы будем рассматривать системы из многих частиц. Положение частиц дают вклад потенциальной энергии в полную энергию системы, а их скорости определяют вклад кинетической энергии. Система движется вдоль траектории с постоянной энергией в фазовом пространстве (далее будут пояснения). Для детерминированных методов естественным является микроканонический ансамбль, энергия которого – это интеграл движения. Кроме того, можно исследовать и системы, для которых интегралом движения являться температура и (или) давление. В этом случае система незамкнута, и ее можно представить в контакте с тепловым резервуаром (канонический ансамбль). Для ее моделирования можно использовать подход, при котором мы ограничиваем ряд степеней свободы системы (например, задаем условие ).
Как мы уже отмечали, в случае, когда процессы в системе происходят непредсказуемо, такие события и связанные с ними величины называют случайными , а алгоритмы моделирования процессов в системе – вероятностными (стохастическими) . Греческое stoohastikos – означает буквально “тот, кто может угадать”.
Стохастические методы используют несколько иной подход, чем детерминистические: требуется насчитать лишь конфигурационную часть задачи. Уравнения для импульса системы всегда можно проинтегрировать. Проблема, которая затем встает – каким образом вести переходы от одной конфигурации к другой, которые в детерминистическом подходе определяться импульсом. Такие переходы в стохастических методах осуществляться при вероятностной эволюции в марковском процессе . Марковский процесс является вероятностным аналогом собственной динамики модели.
Этот подход имеет то преимущество, что позволяет моделировать системы, не имеющие какой – бы то ни было собственной динамики.
В отличие от детерминистических, стохастические методы на ПК реализуют проще, быстрее, однако для получения близких к истинным величин необходима хорошая статистика, что требует моделирования большого ансамбля частиц.
Примером полностью стохастического метода является метод Монте-Карло . Стохастические методы используют важную концепцию марковского процесса (марковской цепи). Марковский процесс является вероятностным аналогом процесса в классической механике. Марковская цепь характеризуется отсутствием памяти, т. е. статистические характеристики ближайшего будущего определяться только настоящим, без учета прошлого.
Модель случайного блуждания
Предположим, что в узлах двумерной решетки в произвольных позициях размещены частицы. На каждом временном шаге частица “прыгает” в одну из блажащих позиций. Значит, частица имеет возможность выбора направления прыжка в любое из четырех ближайших мест. После прыжка частица “не помнит”, откуда она прыгнула. Этот случай соответствует случайному блужданию и является марковской цепью. Результатом на каждом шаге является новое состояние системы частиц. Переход из одного состояния в другое зависит только от предыдущего состояния, т. е. вероятность нахождения системы в состоянии i зависит только от состояния i-1.
Какие же физические процессы в твердом теле напоминают нам (подобие) описанной формальной модели случайного блуждания?
Конечно же, диффузионные, т. е. самые, процессы, механизмы которых мы рассматривали курсе тепло – массопереноса (3 курс). В качестве примера вспомним обычную классическую самодиффузию в кристалле, когда, не меняя своих видимых свойств атомы периодически меняют места временной оседлости и блуждают по решетке, с помощью так называемого “вакансионного” механизма. Он же – один из важнейших механизмов диффузии в сплавах. Явление миграции атомов в твердых телах играют решающую роль во многих традиционных и нетрадиционных технологиях – металлургии, металлообработке, создании полупроводников и сверхпроводников, защитных покрытий и тонких пленок.
Его открыл Роберт Аустен в 1896 году, наблюдая диффузию золота и свинца. Диффузия – процесс перераспределения концентраций атомов в пространстве путем хаотической (тепловой) миграции. Причины , с точки зрения термодинамики, могут быть две: энтропийная (всегда) и энергетическая (иногда). Энтропийная причина – это увеличение хаоса при перемешивании атомов резного сорта. Энергетическая – способствует образованию сплава, когда выгоднее быть рядом атомом разного сорта, и способствует диффузионному распаду, когда энергетический выиграш, обеспечивается размещением вместе атомов одного сорта.
Наиболее распространенными механизмами диффузии являются:
Для реализации вакансионного механизма необходима хотя бы одна вакансия. Миграция вакансий осуществляется путем перехода в незанятый узел одного из соседних атомов. Атом же может осуществить диффузионный скачок, если рядом с ним оказалась вакансия. Вакансия см, с периодом тепловых колебаний атома в узле решеткис, при температуре Т=1330 К (на 6 К
Источники:
http://studopedia.su/3_43972_determinirovannie-i-stohasticheskie-sistemi.html
http://studfile.net/preview/718685/page:7/
http://www.interesnyekartinki.ru/tehnicheskie-biologicheskie-i-dr-sistemy.html