Раскрытие скобок 6. Раскрытие скобок — Гипермаркет знаний
Раскрытие скобок
39. Раскрытие скобок
Выражение а+(b + с) можно записать без скобок: a+(b + c)=a + b + c. Эту операцию называют раскрытием скобок.
Пример 1. Раскроем скобки в выражении а + ( — b + c).
Решение. a + (-b+c) = a + ((-b) + c)=a + (-b) + c = a-b + c.
Если перед скобками стоит знак « + » то можно опустить скобки и этот знак « + » сохранив знаки слагаемых, стоящих в скобках. Если первое слагаемое в скобках записано без знака, то его надо записать со знаком « + ».
Пример 2. Найдем значение выражения -2,87+ (2,87-7,639).
Решение. Раскрывая скобки, получим – 2,87 + (2,87 – 7,639) = — – 2,87 + 2,87 – 7,639 =0 — 7,639 = – 7,639.
Чтобы найти значение выражения — (— 9 + 5), надо сложить числа —9 и 5 и найти число, противоположное полученной сумме: —( — 9 + 5)= —( — 4) = 4.
То же значение можно получить по-другому: вначале записать числа, противоположные данным слагаемым (т. е. изменить их знаки), а потом сложить: 9 + ( — 5) = 4. Таким образом, —( — 9 + 5) = 9 — 5 = 4.
Чтобы записать сумму, противоположную сумме нескольких слагаемых, надо изменить знаки данных слагаемых.
Значит, — (а + b) = — а — b.
Пример 3. Найдем значение выражения 16 — (10 —18 + 12).
Решение. 16—(10 —18 + 12) = 16 + ( —(10 —18 + 12)) = = 16 + (-10 +18-12) = 16-10 +18-12 = 12.
Чтобы раскрыть скобки, перед которыми стоит знак «—», надо заменить этот знак на « + », поменяв знаки всех слагаемых в скобках на противоположные, а потом раскрыть скобки.
Пример 4. Найдем значение выражения 9,36—(9,36 — 5,48).
Решение. 9,36 – (9,36 – 5,48) = 9,36 + (- 9,36 + 5,48) = = 9,36 — 9,36 + 5,48 = 0 -f 5,48 = 5,48.
Раскрытие скобок и применение переместительного и сочетательного свойств сложения позволяют упрощать вычисления.
Пример 5. Найдем значение выражения (—4—20)+(6+13)—(7—8)—5.
Решение. Сначала раскроем скобки, а потом найдем отдельно сумму всех положительных и отдельно сумму всех отрицательных чисел и, наконец, сложим полученные результаты:
( — 4 — 20)+(6+ 13)—(7 — 8) — 5 = —4—20 + 6 + 13—7 + 8—5 = = (6 + 13 + 8)+( — 4 — 20 — 7 — 5)= 27—36=—9.
Пример 6. Найдем значение выражения
Решение.Сначала представим каждое слагаемое в виде суммы их целой и дробной частей, затем раскроем скобки, потом сложим отдельно целые и отдельно дробные части и, наконец, сложим полученные результаты:
Как раскрывают скобки, перед которыми стоит знак « + »? Как можно найти значение выражения, противоположное сумме нескольких чисел? Как раскрыть скобки, перед которыми стоит знак « — »?
1218. Раскройте скобки:
б) 4,57+(2,6 — 4,57); г) с+(-a + b).
1219. Найдите значение выражения:
1220. Раскройте скобки:
а) 85+(7,8+ 98); г) -(80-16) + 84; ж) a-(b-k-n);
б) (4,7 —17)+7,5; д) -а + (m-2,6); з) -(а-b + с);
в) 64—(90 + 100); е) с+(— а-b); и) (m-n)—(p-k).
1221. Раскройте скобки и найдите значение выражения:
1222. Упростите выражение:
1223. Напишите сумму двух выражений и упростите ее:
а) — 4 — m и m + 6,4; г) а+b и р — b
б) 1,1+а и —26—а; д) — m + n и —k — n;
в) а + 13 и —13 + b; е)m — n и n — m.
1224. Напишите разность двух выражений и упростите ее:
1226. Решите с помощью уравнения задачу:
а) На одной полке 42 книги, а на другой 34. Со второй полки сняли несколько книг, а с первой — столько, сколько осталось на второй. После этого на первой полке осталось 12 книг. Сколько книг сняли со второй полки?
б) В первом классе 42 ученика, во втором на 3 ученика меньше, чем в третьем. Сколько учеников в третьем классе, если всего в этих трех классах 125 учеников?
1227. Найдите значение выражения:
1228. Вычислите устно:
1229. Найдите наибольшее значение выражения:
1230. Укажите 4 последовательных целых числа, если:
а) меньшее из них равно —12; в) меньшее из них равно n;
б) большее из них равно —18; г) большее из них равно k.
1231. Найдите координаты середины отрезка, если координаты его концов равны:
1232. Каким числом будет значение выражения x + y, если:
а) x>0, у>0; в) x>0, ус0; д) x>0, у=0;
1233. Решите с помощью графа задачу: «Вера, Нина, Оля и Люба надели платья разных цветов (красное, синее, белое, голубое). На вопрос, кто из них в каком платье, три девочки ответили: 1) Оля — в синем, Люба — в белом; 2) Оля — в красном, Нина — в синем; 3) Вера — в синем, Люба в голубом. В каждом ответе только одна часть верна, а остальные нет. Какого цвета платье надела каждая девочка?
1234. Найдите значение выражения:
1235. Представьте:
а) в виде десятичных дробей:
б) в виде обыкновенных дробей: 1,2; 3,25; 0,75; 1,125.
1236. Найдите неизвестный член пропорции: 1238. Раскройте скобки и найдите значение выражения:
1239. Упростите выражение:
1240. Решите уравнение:
1241. Найдите значение выражения:
1242. Решите задачу, составив пропорцию:
а) Затрачивая на изготовление каждой детали ч, бригада выпускала за смену 540 деталей. Сколько деталей будет выпускать за смену бригада, если на изготовление каждой детали будут затрачивать
ч? На сколько процентов повысится при этом производительность труда?
б) Масса 15 л керосина 12,3 кг. Какова масса 35 л керосина?
в) Из 0,3 т свежих яблок получается 57 кг сушеных. Сколько сушеных яблок получится из 5,5 т свежих?
1243. Решите уравнение:
Н.Я.Виленкин, А.С. Чесноков, С.И. Шварцбурд, В.И.Жохов, Математика для 6 класса, Учебник для средней школы
Планы конспектов уроков по математике 6 класса скачать, учебники и книги бесплатно, разработки уроков по математике онлайн
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь – Образовательный форум.
Тренажёр “Раскрытие скобок” для учащихся 6 класса
Если перед скобками стоит знак «+», то знаки в скобках не меняются,
а если стоит знак « – », то знаки меняются на противоположные
- + (+9+10)
- – (+15+20)
- + (18-24)
- – (– 12 + 13)
- – ( 14 – 25 + 10)
- + ( 10 – 15 + 19 – 13)
2. Раскройте скобки и найдите значение выражения.
- 128 + (224 – 28)
- 397 – (25 + 197)
- 1203 – (–154 + 803)
- 10005 + (–12005 + 876)
- 9054 – (+32 – 2046)
- 1212 + ( +9888 + 279)
- –812 – (–112 – 524)
- – ( 725 + 128 – 275) + 972
- 108-(108-5)=
- -56+(-98+56)=
- (79-81)-(39-81)=
- (-39+15)-(5-39)=
- -49-(-49+2)=
- 100-(-5+100)=
4 . Решите уравнения, предварительно раскрыв скобки
- 12 + (x – 4 ) = 56
- 85 – (– 18 – y) = 76
- –906 – (36 + k) = – 120
Самостоятельная работа по теме:
«Раскрытие скобок и заключение в скобки»
Самостоятельная работа по теме:
«Раскрытие скобок и заключение в скобки»
- Раскройте скобки и вычислите
а) 54 – (129–46) б) 28 + (122 – 228) в) 23 – (–13+76)
- Раскройте скобки и вычислите
а) 28 – (136–72) б) 34 + (229 – 134) в) 17 – (–28+83)
- Поставьте знак «+» или «-», чтобы равенство стало верным
а)…(44–18)…( –21–18) = 44–18+21+18
б) …(–84–13)…( 25–10) = 84+13–25+10
в) …(65+13)…( –11–115) = –65–13–11–115
- Поставьте знак «+» или «-», чтобы равенство стало верным
а)…(59–11)…( –129–58) = –59+11–129–58
б) …(–123–10)…( 47+89) = –123–10– 47–89
в) …(22–34)…( –130–56) = 22–34+130+56
- Решите уравнения
а) 25 + ( x + 12) = 78
б) 126 –(–134 – a) = 115
в) – 405 – (28 + m ) = – 267
- Решите уравнения
а) 45 + ( x + 32) = 96
б) 234 –(–1 16 – n) = 210
в) – 605 – (36 + m ) = – 318
Самостоятельная работа по теме:
«Раскрытие скобок и заключение в скобки»
Самостоятельная работа по теме:
«Раскрытие скобок и заключение в скобки»
- Раскройте скобки и вычислите
а) 54 – (129–46) б) 28 + (122 – 228) в) 23 – (–13+76)
- Раскройте скобки и вычислите
а) 28 – (136–72) б) 34 + (229 – 134) в) 17 – (–28+83)
Раскрытие скобок
Продолжаем изучать основы алгебры. В данном уроке мы научимся раскрывать скобки в выражениях. Раскрыть скобки означает избавить выражение от этих скобок.
Чтобы раскрывать скобки, нужно выучить наизусть два правила. При регулярных занятиях раскрывать скобки можно с закрытыми глазами, и про те правила которые требовалось заучивать наизусть, можно благополучно забыть.
Первое правило раскрытия скобок
Рассмотрим следующее выражение:
Значение данного выражения равно 2. Раскроем скобки в данном выражении. Раскрыть скобки означает избавиться от них, не влияя на значение выражения. То есть после избавления от скобок значение выражения 8 + (−9 + 3) по прежнему должно быть равно двум.
Первое правило раскрытия скобок выглядит следующим образом:
При раскрытии скобок, если перед скобками стоит плюс, то этот плюс опускается вместе со скобками.
Итак, мы видим что в выражении 8 + (−9 + 3) перед скобками стоит плюс. Этот плюс нужно опустить вместе со скобками. Иными словами, скобки исчезнут вместе с плюсом, который перед ними стоял. А то, что было в скобках запишется без изменений:
Мы получили выражение без скобок 8−9+3 . Данное выражение равно 2, как и предыдущее выражение со скобками было равно 2.
Таким образом, между выражениями 8+(−9+3) и 8−9+3 можно поставить знак равенства, поскольку они равны одному и тому же значению:
8 + (−9 + 3) = 8 − 9 + 3
Пример 2. Раскрыть скобки в выражении 3 + (−1 − 4)
Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках останется без изменений:
3 + (−1 − 4) = 3 − 1 − 4
Пример 3. Раскрыть скобки в выражении 2 + (−1)
Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках останется без изменений:
В данном примере раскрытие скобок стало своего рода обратной операцией замене вычитания сложением. Как это понимать?
В выражении 2 − 1 происходит вычитание, но его можно заменить сложением. Тогда получится выражение 2 + (−1) . Но если в выражении 2 + (−1) раскрыть скобки, то получится изначальное 2 − 1 .
Поэтому первое правило раскрытия скобок можно использовать для упрощения выражений после каких-нибудь преобразований. То есть избавить его от скобок и сделать проще.
Чтобы упростить данное выражение, можно привести подобные слагаемые. Напомним, что для приведения подобных слагаемых, нужно сложить коэффициенты подобных слагаемых и результат умножить на общую буквенную часть:
Получили выражение 3a + (−4b) . В этом выражении раскроем скобки. Перед скобками стоит плюс, поэтому используем первое правило раскрытия скобок, то есть опускаем скобки вместе с плюсом, который стоит перед этими скобками:
Таким образом, выражение 2a+a−5b+b упрощается до 3a−4b .
Раскрыв одни скобки, по пути могут встретиться другие. К ним применяем те же правила, что и к первым. Например, раскроем скобки в следующем выражении:
Здесь два места, где нужно раскрыть скобки. В данном случае применимо первое правило раскрытия скобок, а именно опускание скобок вместе с плюсом, который стоит перед этими скобками:
2 + (−3 + 1) + 3 + (−6) = 2 − 3 + 1 + 3 − 6
Пример 3. Раскрыть скобки в выражении 6+(−3)+(−2)
В обоих местах, где имеются скобки, перед ними стоит плюс. Здесь опять же применяется первое правило раскрытия скобок:
6 + (−3) + (−2) = 6 − 3 − 2
Иногда первое слагаемое в скобках записано без знака. Например, в выражении 1+(2+3−4) первое слагаемое в скобках 2 записано без знака. Возникает вопрос, а какой знак будет стоять перед двойкой после того, как скобки и плюс, стоящий перед скобками опустятся? Ответ напрашивается сам — перед двойкой будет стоять плюс.
На самом деле даже будучи в скобках перед двойкой стоит плюс, но мы его не видим по причине того, что его не записывают. Мы уже говорили, что полная запись положительных чисел выглядит как +1, +2, +3 . Но плюсы по традиции не записывают, поэтому мы и видим привычные для нас положительные числа 1, 2, 3 .
Поэтому, чтобы раскрыть скобки в выражении 1+(2+3−4) , нужно как обычно опустить скобки вместе с плюсом, стоящим перед этими скобками, но первое слагаемое которое было в скобках записать со знаком плюс:
1 + (2 + 3 − 4) = 1 + 2 + 3 − 4
Пример 4. Раскрыть скобки в выражении −5 + (2 − 3)
Перед скобками стоит плюс, поэтому применяем первое правило раскрытия скобок, а именно опускаем скобки вместе с плюсом, который стоит перед этими скобками. Но первое слагаемое, которое в скобках записываем со знаком плюс:
−5 + (2 − 3) = −5 + 2 − 3
Пример 5. Раскрыть скобки в выражении (−5)
Перед скобками стоит плюс, но он не записан по причине того, что до него не было других чисел или выражений. Наша задача убрать скобки, применив первое правило раскрытия скобок, а именно опустить скобки вместе с этим плюсом (даже если он невидим)
Пример 6. Раскрыть скобки в выражении 2a + (−6a + b)
Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишется без изменений:
2a + (−6a + b) = 2a −6a + b
Пример 7. Раскрыть скобки в выражении 5a + (−7b + 6c) + 3a + (−2d)
В данном выражении имеется два места, где нужно раскрыть скобки. В обоих участках перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишется без изменений:
5a + (−7b + 6c) + 3a + (−2d) = 5a −7b + 6c + 3a − 2d
Второе правило раскрытия скобок
Теперь рассмотрим второе правило раскрытия скобок. Оно применяется тогда, когда перед скобками стоит минус.
Если перед скобками стоит минус, то этот минус опускается вместе со скобками, но слагаемые, которые были в скобках, меняют свой знак на противоположный.
Например, раскроем скобки в следующем выражении
Видим, что перед скобками стоит минус. Значит нужно применить второе правило раскрытия, а именно опустить скобки вместе с минусом, стоящим перед этими скобками. При этом слагаемые, которые были в скобках, поменяют свой знак на противоположный:
Мы получили выражение без скобок 5 + 2 + 3 . Данное выражение равно 10, как и предыдущее выражение со скобками было равно 10.
Таким образом, между выражениями 5−(−2−3) и 5+2+3 можно поставить знак равенства, поскольку они равны одному и тому же значению:
5 − (−2 − 3) = 5 + 2 + 3
Пример 2. Раскрыть скобки в выражении 6 − (−2 − 5)
Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок, а именно опускаем скобки вместе с минусом, который стоит перед этими скобками. При этом слагаемые, которые были в скобках, записываем с противоположными знаками:
6 − (−2 − 5) = 6 + 2 + 5
Пример 3. Раскрыть скобки в выражении 2 − (7 + 3)
Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:
2 − (7 + 3) = 2 − 7 − 3
Пример 4. Раскрыть скобки в выражении −(−3 + 4)
Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:
Пример 5. Раскрыть скобки в выражении −(−8 − 2) + 16 + (−9 − 2)
Здесь два места, где нужно раскрыть скобки. В первом случае нужно применить второе правило раскрытия скобок, а когда очередь доходит до выражения +(−9 − 2) нужно применить первое правило:
−(−8 − 2) + 16 + (−9 − 2) = 8 + 2 + 16 − 9 − 2
Пример 6. Раскрыть скобки в выражении −(−a − 1)
Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:
Пример 7. Раскрыть скобки в выражении −(4a + 3)
Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:
Пример 8. Раскрыть скобки в выражении a − (4b + 3) + 15
Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:
Пример 9. Раскрыть скобки в выражении 2a + (3b − b) − (3c + 5)
Здесь два места, где нужно раскрыть скобки. В первом случае нужно применить первое правило раскрытия скобок, а когда очередь доходит до выражения −(3c+5) нужно применить второе правило:
2a + (3b − b) − (3c + 5) = 2a + 3b − b − 3c − 5
Пример 10. Раскрыть скобки в выражении −a − (−4a) + (−6b) − (−8c + 15)
Здесь три места, где нужно раскрыть скобки. Вначале нужно применить второе правило раскрытия скобок, затем первое, а затем опять второе:
−a − (−4a) + (−6b) − (−8c + 15) = −a + 4a − 6b + 8c − 15
Механизм раскрытия скобок
Правила раскрытия скобок, которые мы сейчас рассмотрели, основаны на распределительном законе умножения:
На самом деле раскрытием скобок называют ту процедуру, когда общий множитель умножают на каждое слагаемое в скобках. В результате такого умножения скобки исчезают. Например, раскроем скобки в выражении 3×(4+5)
3 × (4 + 5) = 3 × 4 + 3 × 5
Поэтому, если нужно умножить число на выражение в скобках (или выражение в скобках умножить на число) надо говорить раскроем скобки.
Но как связан распределительный закон умножения с правилами раскрытия скобок, которые мы рассматривали ранее?
Дело в том, что перед любыми скобками стоит общий множитель. В примере 3×(4+5) общий множитель это 3 . А в примере a(b+c) общий множитель это переменная a .
Если перед скобками нет чисел или переменных, то общим множителем является 1 или −1 , в зависимости от того, какой знак стоит перед скобками. Если перед скобками стоит плюс, значит общим множителем является 1 . Если перед скобками стоит минус, значит общим множителем является −1 .
К примеру, раскроем скобки в выражении −(3b−1) . Перед скобками стоит минус, поэтому нужно воспользоваться вторым правилом раскрытия скобок, то есть опустить скобки вместе с минусом, стоящим перед скобками. А выражение, которое было в скобках, записать с противоположными знаками:
Мы раскрыли скобки, воспользовавшись правилом раскрытия скобок. Но эти же скобки можно раскрыть, воспользовавшись распределительным законом умножения. Для этого сначала записываем перед скобками общий множитель 1, который не был записан:
Минус, который раньше стоял перед скобками относился к этой единице. Теперь можно раскрыть скобки, применяя распределительный закон умножения. Для этого общий множитель −1 нужно умножить на каждое слагаемое в скобках и полученные результаты сложить.
Для удобства заменим разность, находящуюся в скобках на сумму:
Далее умножаем общий множитель −1 на каждое слагаемое в скобках:
−1 (3b −1) = −1 (3b + (−1)) = −1 × 3b + (−1) × (−1) = −3b + 1
Как и в прошлый раз мы получили выражение −3b+1 . Каждый согласится с тем, что в этот раз затрачено больше времени на решение столь простейшего примера. Поэтому разумнее пользоваться готовыми правилами раскрытия скобок, которые мы рассматривали в данном уроке:
Но не мешает знать, как эти правила работают.
В данном уроке мы научились ещё одному тождественному преобразованию. Вместе с раскрытием скобок, вынесением общего за скобки и приведением подобных слагаемых можно немного расширить круг решаемых задач. Например:
Раскрыть скобки и привести подобные слагаемые в следующем выражении:
Здесь нужно выполнить два действия — сначала раскрыть скобки, а потом привести подобные слагаемые. Итак, по порядку:
1) Раскрываем скобки:
2) Приводим подобные слагаемые:
В получившемся выражении −10b+(−1) можно раскрыть скобки:
Пример 2. Раскрыть скобки и привести подобные слагаемые в следующем выражении:
1) Раскроем скобки:
2) Приведем подобные слагаемые. В этот раз для экономии времени и места, не будем записывать, как коэффициенты умножаются на общую буквенную часть
Пример 3. Упростить выражение 8m+3m и найти его значение при m=−4
1) Сначала упростим выражение. Чтобы упростить выражение 8m+3m , можно вынести в нём общий множитель m за скобки:
2) Находим значение выражения m(8+3) при m=−4 . Для этого в выражение m(8+3) вместо переменной m подставляем число −4
m (8 + 3) = −4 (8 + 3) = −4 × 8 + (−4) × 3 = −32 + (−12) = −44
Источники:
http://edufuture.biz/index.php?title=%D0%A0%D0%B0%D1%81%D0%BA%D1%80%D1%8B%D1%82%D0%B8%D0%B5_%D1%81%D0%BA%D0%BE%D0%B1%D0%BE%D0%BA
http://mega-talant.com/biblioteka/trenazher-raskrytie-skobok-dlya-uchaschihsya-6-klassa-86397.html