Моделирование с использованием имитационного подхода. Имитационные модели
Имитационное моделирование
Имитационное моделирование является мощным инструментом исследования поведения реальных систем. Методы имитационного моделирования позволяют собрать необходимую информацию о поведении системы путем создания ее компьютерной модели. Эта информация используется затем для проектирования системы.
Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами в предметной области для проведения различных экспериментов.
Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны.
К имитационному моделированию прибегают, когда:
1. Дорого или невозможно экспериментировать на реальном объекте.
2. Невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные.
3. Необходимо сымитировать поведение системы во времени.
Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950х — 1960х годах.
Можно выделить две разновидности имитации:
1. Метод Монте-Карло (метод статистических испытаний);
2. Метод имитационного моделирования (статистическое моделирование).
В настоящее время выделяют три направления имитационных моделей:
1. Агентное моделирование — относительно новое (1990е-2000е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот. Когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы.
Цель агентных моделей — получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. Агент — некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.
2. Дискретно-событийное моделирование — подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений — от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов.
3. Системная динамика — парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии.
Основные понятия построения модели
Имитационное моделирование основано на воспроизведении с помощью компьютеров развернутого во времени процесса функционирования системы с учетом взаимодействия с внешней средой.
Основой всякой имитационной модели (ИМ) является:
· разработка модели исследуемой системы на основе частных имитационных моделей (модулей) подсистем, объединенных своими взаимодействиями в единое целое;
· выбор информативных (интегративных) характеристик объекта, способов их получения и анализа;
· построение модели воздействия внешней среды на систему в виде совокупности имитационных моделей внешних воздействующих факторов;
· выбор способа исследования имитационной модели в соответствии с методами планирования имитационных экспериментов (ИЭ).
Условно имитационную модель можно представить в виде действующих, программно (или аппаратно) реализованных блоков.
На рисунке показана структура имитационной модели. Блок имитации внешних воздействий (БИВВ) формирует реализации случайных или детерминированных процессов, имитирующих воздействия внешней среды на объект. Блок обработки результатов (БОР) предназначен для получения информативных характеристик исследуемого объекта. Необходимая для этого информация поступает из блока математической модели объекта (БМО). Блок управления (БУИМ) реализует способ исследования имитационной модели, основное его назначение – автоматизация процесса проведения ИЭ.
Целью имитационного моделирования является конструирование ИМ объекта и проведение ИЭ над ней для изучения закономерностей функционирования и поведения с учетом заданных ограничений и целевых функций в условиях имитации и взаимодействия с внешней средой.
Принципы и методы построения имитационных моделей
Процесс функционирования сложной системы можно рассматривать как смену ее состояний, описываемых ее фазовыми переменными
Z1(t), Z2(t), Zn(t) в n – мерном пространстве.
Задачей имитационного моделирования является получение траектории движения рассматриваемой системы в n – мерном пространстве (Z1, Z2, Zn), а также вычисление некоторых показателей, зависящих от выходных сигналов системы и характеризующих ее свойства.
В данном случае “движение” системы понимается в общем смысле – как любое изменение, происходящее в ней.
Известны два принципа построения модели процесса функционирования систем:
1. Принцип Δt для детерминированных систем
Предположим, что начальное состояние системы соответствует значениям Z1(t0), Z2(t0), Zn(t0). Принцип Δt предполагает преобразование модели системы к такому виду, чтобы значения Z1, Z2, Zn в момент времени t1 = t0 + Δt можно было вычислить через начальные значения, а в момент t2 = t1+ Δt через значения на предшествующем шаге и так для каждого i-ого шага ( t = const, i = 1 M).
Для систем, где случайность является определяющим фактором, принцип Δt заключается в следующем:
1. Определяется условное распределение вероятности на первом шаге (t1 = t0+ Δt) для случайного вектора, обозначим его (Z1, Z2, Zn). Условие состоит в том, что начальное состояние системы соответствует точке траектории .
2. Вычисляются значения координат точки траектории движения системы (t1 = t0+ Δt), как значения координат случайного вектора, заданного распределением, найденным на предыдущем шаге.
3. Отыскиваются условное распределение вектора на втором шаге (t2 = t1 + Δ t), при условии получения соответствующих значений на первом шаге и т.д., пока ti = t0 + i Δ t не примет значения (tМ = t0 + М Δ t).
Принцип Δ t является универсальным, применим для широкого класса систем. Его недостатком является неэкономичность с точки зрения затрат машинного времени.
2. Принцип особых состояний (принцип δz).
При рассмотрении некоторых видов систем можно выделить два вида состояний δz:
1. Обычное, в котором система находится большую часть времени, при этом Zi(t), (i=1 n) изменяются плавно;
2. Особое, характерное для системы в некоторые моменты времени, причем состояние системы изменяется в эти моменты скачком.
Принцип особых состояний отличается от принципа Δt тем, что шаги по времени в этом случае не постоянны, является величиной случайной и вычисляется в соответствии с информацией о предыдущем особом состоянии.
Примерами систем, имеющих особые состояния, являются системы массового обслуживания. Особые состояния появляются в моменты поступления заявок, в моменты освобождения каналов и т.д.
Основные методы имитационного моделирования.
Основными методами имитационного моделирования являются: аналитический метод, метод статического моделирования и комбинированный метод (аналитико-статистический) метод.
Аналитический метод применяется для имитации процессов в основном для малых и простых систем, где отсутствует фактор случайности. Метод назван условно, так как он объединяет возможности имитации процесса, модель которого получена в виде аналитически замкнутого решения, или решения полученного методами вычислительной математики.
Метод статистического моделирования первоначально развивался как метод статистических испытаний (Монте-Карло). Это – численный метод, состоящий в получении оценок вероятностных характеристик, совпадающих с решением аналитических задач (например, с решением уравнений и вычислением определенного интеграла). В последствии этот метод стал применяться для имитации процессов, происходящих в системах, внутри которых есть источник случайности или которые подвержены случайным воздействиям. Он получил название метода статистического моделирования.
Комбинированный метод (аналитико-статистический) позволяет объединить достоинства аналитического и статистического методов моделирования. Он применяется в случае разработки модели, состоящей из различных модулей, представляющих набор как статистических так и аналитических моделей, которые взаимодействуют как единое целое. Причем в набор модулей могут входить не только модули соответствующие динамическим моделям, но и модули соответствующие статическим математическим моделям.
Вопросы для самопроверки
1. Определить, что такое оптимизационная математическую модель.
2. Для чего могут использоваться оптимизационные модели?
3. Определить особенности имитационного моделирования.
4. Дать характеристику метода статистического моделирования.
5. Что есть модель типа «черный ящик», модель состава, структуры, модель типа «белый ящик»?
109.201.137.33 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Зачем нужно имитационное моделирование?
Имитационное моделирование решает проблемы реального мира безопасно и разумно. Это удобный инструмент для анализа: он нагляден, прост для понимания и проверки. В разных областях бизнеса и науки имитационное моделирование помогает найти оптимальные решения и дает четкое представление о сложных системах.
Биты вместо атомов: имитационное моделирование – эксперимент над достоверным цифровым представлением любой системы. В отличие от физического моделирования, такого как создание макета здания, имитационное моделирование основано на компьютерных технологиях, использующих алгоритмы и уравнения. Имитационную модель можно анализировать в динамике, а также просматривать анимацию в 2D или 3D.
Компьютерное моделирование используется в бизнесе, когда проведение экспериментов на реальной системе невозможно или непрактично, чаще всего из-за их стоимости или длительности.
Возможность анализировать модель в действии отличает имитационное моделирование от других методов, например, от использования Excel или линейного программирования. Пользователь изучает процессы и вносит изменения в имитационную модель в ходе работы, что позволяет лучше проанализировать работу системы и быстро решить поставленную задачу.
безрисковая среда
экономьте время и деньги
визуализация
понимание динамики
повышенная точность
управление неопределенностью
Пример: имитационное моделирование для эффективного обслуживания клиентов
Приведенный ниже пример может найти применение при решении большого класса задач. Например, проблемы управления человеческими и техническими ресурсами. Моделирование поможет любой коммерческой компании снизить расходы на материалы, кадры и оборудование.
Поиск оптимального количества сотрудников для предоставления клиентам требуемого уровня сервиса
На первом этапе устанавливается главный критерий уровня сервиса в банке – средний размер очереди. Далее выбираются соответствующие параметры системы для задания параметров модели: количество клиентов, интенсивность их прибытия, время на прием одного клиента и естественные отклонения от средних величин, которые периодически возникают, например, часы пик и сложные запросы клиентов.
Затем создается блок-схема, соответствующая структуре отделения банка и его бизнес-процессам. Модель учитывает только факторы, оказывающие влияние на анализируемую проблему. Например, наличие отделения обслуживания юридических лиц или кредитного отдела не влияет на обслуживание физических лиц, поскольку эти отделы физически и функционально отделены.
Наконец, после загрузки в модель входных данных, имитация запускается, и появляется возможность посмотреть работу отделения банка в динамике, что позволяет обработать и проанализировать результаты. Если средний размер очереди клиентов превысил установленный предел, то количество доступных сотрудников увеличивают, и эксперимент выполняется заново. Этот процесс может автоматически выполняться, пока не будет найдено оптимальное решение.
Изменяя входные данные модели, можно быстро исследовать множество сценариев. Их можно протестировать, исследовать в динамике и сопоставить друг с другом. Благодаря этим результатам, аналитики, инженеры и менеджеры могут делать выводы и принимать решения с уверенностью.
Имитационные модели
Еще одним примером существенно машинных моделей являются имитационные модели. Несмотря на то что имитационное моделирование становится все более популярным методом исследования сложных систем и процессов, на сегодняшний день нет единого, признаваемого всеми исследователями определения имитационной модели.
В большинстве используемых определений подразумевается, что имитационная модель создается и реализуется с помощью набора математических и инструментальных средств, позволяющих с использованием компьютера провести целенаправленные расчеты характеристик моделируемого процесса и оптимизацию некоторых его параметров.
Существуют и крайние точки зрения. Одна из них связана с утверждением, что имитационной моделью можно признать любое логико-математическое описание системы, которое может быть использовано в ходе проведения вычислительных экспериментов. С этих позиций расчеты, связанные с варьированием параметров в чисто детерминированных задачах, признаются имитационным моделированием.
Сторонники другой крайней точки зрения считают, что имитационная модель — это обязательно специальный программный комплекс, который позволяет имитировать деятельность какого-либо сложного объекта. «Метод имитационного моделирования является экспериментальным методом исследования реальной системы по ее компьютерной модели, который сочетает особенности экспериментального подхода и специфические условия использования вычислительной техники. Имитационное моделирование является машинным методом моделирования, собственно без ЭВМ никогда не существовало, и только развитие информационных технологий привело к становлению этого вида компьютерного моделирования» [1] . Такой подход отрицает возможность создания простейших имитационных моделей без применения компьютера.
Будем придерживаться далее следующего определения имитационной модели.
Определение 1.9. Имитационная модель — особая разновидность информационных моделей, сочетающая элементы аналитических, компьютерных и аналоговых моделей, которая позволяет с помощью последовательности вычислений и графического отображения результатов ее работы воспроизводить (имитировать) процессы функционирования изучаемого объекта при воздействии на него различных (как правило, случайных) факторов.
Имитационное моделирование применяется сегодня для моделирования бизнес-процессов, цепочек поставок, боевых действий, динамики населения, исторических процессов, конкуренции и других процессов, для прогнозирования последствий управленческих решений в самых разных областях. Имитационное моделирование позволяет исследовать системы любой природы, сложности и назначения и практически с любой степенью детализации, ограниченной лишь трудоемкостью разработки имитационной модели и техническими возможностями используемых для проведения экспериментов вычислительных средств.
Имитационные модели, которые разрабатываются для решения современных практических задач, обычно содержат большое число сложно взаимодействующих стохастических элементов, каждый из которых описывается большим числом параметров и подвергается стохастическим воздействиям. В этих случаях, как правило, натурное моделирование нежелательно или невозможно, а аналитическое решение затруднено или также невозможно. Часто реализация имитационной модели требует организации распределенных вычислений [2] . По этим причинам имитационные модели относятся к существенно машинным моделям.
Имитационная модель предполагает представление модели в виде некоторого алгоритма, реализуемого компьютерной программой, выполнение которого имитирует последовательность смены состояний в системе и таким образом отображает поведение моделируемой системы или процесса.
При наличии случайных факторов необходимые характеристики моделируемых процессов получаются в результате многократных прогонов имитационной модели и последующей статистической обработки накопленной информации.
Заметим, что с точки зрения сиециалиста-нрикладника правомерно трактовать имитационное моделирование как информационную технологию: «Имитационное моделирование контролируемого процесса или управляемого объекта — это высокоуровневая информационная технология, которая обеспечивает два вида действий, выполняемых с помощью компьютера:
- 1) работы по созданию или модификации имитационной модели;
- 2) эксплуатацию имитационной модели и интерпретацию результатов» [3] .
Модульный принцип построения имитационной модели. Итак, имитационное моделирование предполагает наличие построенных логикоматематических моделей, описывающих изучаемую систему во взаимосвязи с внешней средой, воспроизведение протекающих в ней процессов с сохранением их логической структуры и последовательности во времени при помощи средств вычислительной техники. Наиболее рационально строить имитационную модель функционирования системы по модульному принципу. При этом могут быть выделены три взаимосвязанных блока модулей такой модели (рис. 1.7).
Рис. 1.7. Схема взаимодействия блоков имитационной модели
Основная часть алгоритмической модели реализуется в блоке имитации процессов функционирования объекта (блок 2). Здесь организуется отсчет модельного времени, воспроизводится логика и динамика взаимодействия элементов модели, обеспечивается проведение экспериментов для накопления данных, необходимых для расчета оценок характеристик функционирования объекта. Блок имитации случайных воздействий (блок 1) служит для генерирования значений случайных величин и процессов. В его состав входят генераторы стандартных распределений и средства реализации алгоритмов моделирования случайных воздействий с требуемыми свойствами. В блоке обработки результатов имитации (блок 3) рассчитываются текущие и итоговые значения характеристик, составляющие результаты экспериментов с моделью. Такие эксперименты могут состоять в решении сопутствующих задач, в том числе оптимизационных или обратных.
- [1] Лычкина II. II. Указ. соч.
- [2] Распределенные вычисления — способ решения трудоемких вычислительных задачс использованием нескольких компьютеров, чаще всего объединенных в параллельнуювычислительную систему.
- [3] Емельянов А. А, Власова Е. А., Дума Р. В. Имитационное моделирование экономическихпроцессов. М. : Финансы и статистика, 2006. С. 6.
Источники:
http://studopedia.ru/5_32577_imitatsionnoe-modelirovanie.html
http://www.anylogic.ru/use-of-simulation/
http://m.studme.org/190916/ekonomika/imitatsionnye_modeli