Логические связки в нечеткой логике.

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Что такое нечеткая логика (fuzzy logic): принцип работы, примеры, применение

Введение в нечеткую логику

Нечеткая логика – это логическая или управляющая система n-значной логической системы, которая использует степени состояния («степени правды») входов и формирует выходы, зависящие от состояний входов и скорости изменения этих состояний. Это не обычная «истинная или ложная» (1 или 0), булева (двоичная) логика, на которой основаны современные компьютеры. Она в основном обеспечивает основы для приблизительного рассуждения с использованием неточных решений и позволяет использовать лингвистические переменные.

Нечеткая логика была разработана в 1965 году профессором Лотфи Заде в Калифорнийском университете в Беркли. Первым приложением было выполнение обработки компьютерных данных на основе естественных значений.

Если говорить проще, состояниями нечеткой логики могут быть не только 1 или 0, но и значения между ними, то есть 0.15, 0.8 и т.д. Например, в двоичной логике, мы можем сказать, что мы имеем стакан горячей воды (то есть 1 или высокий логический уровень) или стакан холодной воды, то есть (0 или низкий логический уровень), но в нечеткой логике, мы можем сказать, что мы имеем стакан теплой воды (ни горячий, ни холодный, то есть где-то между этими двумя крайними состояниями). Четкая логика: да или нет (1, 0). Нечеткая логика: конечно, да; возможно, нет; не могу сказать; возможно да и т.д.

Базовая архитектура нечеткой логической системы

Система нечеткой логики состоит из следующих модулей:

Фазифаер (Fuzzifier или оператор размытия). Он принимает измеренные переменные в качестве входных данных и преобразует числовые значения в лингвистические переменные. Он преобразует физические значения, а также сигналы ошибок в нормализованное нечеткое подмножество, которое состоит из интервала для диапазона входных значений и функций принадлежности, которые описывают вероятность состояния входных переменных. Входной сигнал в основном разделен на пять состояний, таких как: большой положительный, средний положительный, малый, средний отрицательный и большой отрицательный.

Контроллер. Он состоит из базы знаний и механизма вывода. База знаний хранит функции принадлежности и нечеткие правила, полученные путем знания работы системы в среде. Механизм вывода выполняет обработку полученных функций принадлежности и нечетких правил. Другими словами, механизм вывода формирует выходные данные на основе лингвистической информации.

Дефазифаер (Defuzzifier или оператор восстановления чёткости). Он выполняет обратный процесс фазифаера. Другими словами, он преобразует нечеткие значения в нормальные числовые или физические сигналы и отправляет их в физическую систему для управления работой системы.

Принцип работы системы нечеткой логики

Нечеткая операция предполагает использование нечетких множеств и функций принадлежности. Каждое нечеткое множество представляет собой представление лингвистической переменной, которая определяет возможное состояние вывода. Функция принадлежности является функцией общего значения в нечетком множестве, так что и общее значение, и нечеткое множество принадлежат универсальному множеству.

Степени принадлежности в этом общем значении в нечетком множестве определяют выход, основанный на принципе IF-THEN. Принадлежность назначается на основе предположения о выходе с помощью входов и скорости изменения входных данных. Функция принадлежности в основном представляет собой графическое представление нечеткого множества.

Рассмотрим такое значение «х», что x ∈ X для всего интервала [0,1] и нечеткого множества A, которое является подмножеством X. Функция принадлежности «x» в подмножестве A задается как: fA (x), Обратите внимание, что «x» обозначает значение принадлежности. Ниже приводится графическое представление нечетких множеств.

Читать еще:  Слабые стороны у человека. Слабые и сильные стороны человека

В то время как ось x обозначает универсальный набор, ось y обозначает степени принадлежности. Эти функции принадлежности могут быть треугольными, трапециевидными, одноточечными или гауссовыми по форме.

Практический пример системы на основе нечеткой логики

Давайте разработаем простую систему нечеткого управления для управления работой стиральной машины, так чтобы нечеткая система контролировала процесс стирки, водозабор, время стирки и скорость отжима. Входными параметрами здесь являются объем одежды, степень загрязнения и тип грязи. В то время как объем одежды определял бы водозабор, степень загрязнения в свою очередь определялась бы прозрачностью воды, а тип грязи определялся временем, когда цвет воды остается неизменным.

Первым шагом будет определение лингвистических переменных и терминов. Для входных данных лингвистические переменные приведены ниже:

Для вывода лингвистические переменные приведены ниже:

Второй шаг включает в себя построение функций принадлежности. Ниже приведены графики, определяющие функции принадлежности для двух входов. Функции принадлежности для качества грязи:

Функции принадлежности для типа грязи:

Третий шаг включает разработку набора правил для базы знаний. Ниже приведен набор правил с использованием логики IF-THEN (если-тогда):

IF качество грязи Small И Тип грязи Greasy, THEN Время стирки Long.
IF качество грязи Medium И Тип грязи Greasy, THEN Время стирки Long.
IF качество грязи Large и тип грязи Greasy, THEN Время стирки Very Long.
IF качество грязи Small И Тип грязи Medium, THEN Время стирки Medium.
IF качество грязи Medium И Тип грязи Medium, THEN Время стирки Medium.
IF качество грязи Large и тип грязи Medium, THEN Время стирки Medium.
IF качество грязи Small и тип грязи Non-Greasy, THEN Время стирки Very Short.
IF качество грязи Medium И Тип грязи Non-Greasy, THEN Время стирки Medium.
IF качество грязи Large и тип грязи Greasy, THEN Время стирки Very Short.

Фазифаер, который первоначально преобразовал входные данные датчиков в эти лингвистические переменные, теперь применяет вышеуказанные правила для выполнения операций нечеткого набора (например, MIN и MAX) для определения выходных нечетких функций. На основе выходных нечетких множеств разработана функция принадлежности. Последним шагом является этап дефазификации, в котором дефазифаер использует выходные функции принадлежности для определения времени стирки.

Области применения нечеткой логики

Системы нечеткой логики могут использоваться в автомобильных системах, таких как автоматические коробки передач. Приложения в области бытовых приборов включают в себя микроволновые печи, кондиционеры, стиральные машины, телевизоры, холодильники, пылесосы и т. д.

Логические связки в нечеткой логике.

где imp— импликация, обычно реализуемая как операция нахождения минимума; agg— агрегирование нечетких множеств, которое наиболее часто реализуется операцией нахождения максимума.

Четкое значение выхода , соответствующее входному вектору, определяется в результате дефаззификации нечеткого множества. Наиболее часто применяется дефаззификация по методу центра тяжести:

Модели типа Мамдани и типа Сугэно будут идентичными, когда заключения правил заданы четкими числами, т. е. в случае, если:

1) термы dj выходной переменной в модели типа Мамдани задаются синглтонами — нечеткими аналогами четких чисел. В этом случае степени принадлежностей для всех элементов универсального множества равны нулю, за исключением одного со степенью принадлежности равной единице;

Читать еще:  Как заполняется личная карточка. Заполнение карточки Т2 (образец)

2) заключения правил в базе знаний модели типа Сугэно заданы функциями, в которых все коэффициенты при входных переменных равны нулю.

2.3.2 Нечеткая модель типа Сугэно

На сегодняшний день существует несколько моделей нечеткого управления, одной из которых является модель Такаги-Сугено.

Модель Такаги-Сугено иногда носит называние Takagi-Sugeno-Kang. Причина состоит в том, что этот тип нечеткой модели был первоначально предложен Takagi и Sugeno. Однако Канг и Сугено провели превосходную работу над идентификацией нечеткой модели. Отсюда и происхождение названия модели.

В модели типа Сугэно взаимосвязь между входами и выходом y задается нечеткой базой знаний вида:

, (1)

где — некоторые числа.

База знаний (3) аналогична (1) за исключением заключений правил , которые задаются не нечеткими термами, а линейной функцией от входов:

,

Таким образом, база знаний в модели типа Сугэно является гибридной — ее правила содержат посылки в виде нечетких множеств и заключения в виде четкой линейной функции. База знаний (3) может трактоваться как некоторое разбиение пространства влияющих факторов на нечеткие подобласти, в каждой из которых значение функции отклика рассчитывается как линейная комбинация входов. Правила являются своего рода переключателями с одного линейного закона «входы–выход» на другой, тоже линейный. Границы подобластей размытые, следовательно, одновременно могут выполняться несколько линейных законов, но с различными весами. Результирующее значение выхода определяется как суперпозиция линейных зависимостей, выполняемых в данной точке n-мерного факторного пространства. Это может быть взвешенное среднее

,

или взвешенная сумма

.

Значения рассчитываются как и для модели типа Мамдани, т. е. по формуле (2).Обратим внимание, что в модели Сугэно в качестве операций ˄ и ˅обычно используются соответственно вероятностное ИЛИ и умножение. В этом случае нечеткая модель типа Сугэно может рассматриваться как особый класс многослойных нейронных сетей прямого распространения сигнала, структура которой изоморфна базе знаний. Такие сети получили название нейро-нечетких.

Логические связки в нечеткой логике.

Классическая логика по определению не может оперировать с нечетко очерченными понятиями, поскольку все высказывания в формальных логических системах могут иметь только два взаимоисключающих состояния: «истина» со значением истинности «1» и «ложь» со значением истинности «0». Одной из попыток уйти от двузначной бинарной логики для описания неопределенности было введение Лукашевичем трехзначной логики с третьим состоянием «возможно» со значением истинности «0,5». Введя в рассмотрение нечеткие множества, Заде предложил обобщить классическую бинарную логику на основе рассмотрения бесконечного множества значений истинности. В предложенном Заде варианте нечеткой логики множество значений истинности высказываний обобщается до интервала 0 ; 1 , т.е. включает как частные случаи классическую бинарную логику и трехзначную логику Лукашевича. Такой подход позволяет рассматривать высказывания с различными значениями истинности и выполнять рассуждения с неопределенностью.

Нечеткое высказывание – это законченная мысль, об истинности или ложности которой можно судить только с некоторой степенью уверенности 0 ; 1 : «возможно истинно», «возможно ложно» и т.п. Чем выше уверенность в истинности высказывания, тем ближе значение степени истинности к 1 . В предельных случаях 0 , если мы абсолютно уверены в ложности высказывания, и 1 , если мы абсолютно уверены в истинности высказывания, что соответствует классической бинарной логике. В нечеткой логике нечеткие высказывания обозначаются так же, как и нечеткие множества: A , B , C … . Введем нечеткое отображение T : Ω → 0 ; 1 , которое действует на множестве нечетких высказываний Ω = A , B , C … . В этом случае значение истинности высказывания A ∈ Ω определяется как T A ∈ 0 ; 1 и является количественной оценкой нечеткости, неопределенности, содержащейся в высказывании A .

Читать еще:  Происхождение и характер имени арслан.

Логическое отрицание нечеткого высказывания A обозначается ¬ A – это унарная (т.е. производимая над одним аргументом) логическая операция, результат которой является нечетким высказыванием «не A », «неверно, что A », значение истинности которого:

Помимо приведенного выше исторически принятого основного определения нечеткого логического отрицания (нечеткого «НЕ»), введенного Заде, могут использоваться следующие альтернативные формулы:

T ¬ A = 1 − T A 1 + λT A , λ > − 1, – нечеткое λ -дополнение по Сугено;

T ¬ A = 1 − T A p , p > 0, – нечеткое p -дополнение по Ягеру.

Логическая конъюнкция нечетких высказываний A и B обозначается A ∩ B – это бинарная (т.е. производимая над двумя аргументами) логическая операция, результат которой является нечетким высказыванием « A и B », значение истинности которого:

T A ∩ B = min T A ; T B .

Помимо приведенного выше исторически принятого основного определения логической конъюнкции (нечеткого «И»), введенного Заде, могут использоваться следующие альтернативные формулы:

T A ∩ B = T A T B – в базисе Бандлера-Кохоута;

T A ∩ B = max T A + T B − 1 ; 0 – в базисе Лукашевича-Гилеса;

T A ∩ B = T B , при T A = 1 ; T A , при T B = 1 ; 0, в остальных случаях; – в базисе Вебера.

Логическая дизъюнкция нечетких высказываний A и B обозначается A ∪ B – это бинарная логическая операция, результат которой является нечетким высказыванием « A или B », значение истинности которого:

T A ∪ B = max T A ; T B .

Помимо приведенного выше исторически принятого основного определения логической дизъюнкции (нечеткого «ИЛИ»), введенного Заде, могут использоваться следующие альтернативные формулы:

T A ∪ B = T A + T B − T A T B – в базисе Бандлера-Кохоута;

T A ∪ B = min T A + T B ; 1 – в базисе Лукашевича-Гилеса;

T A ∪ B = T B , при T A = 0 ; T A , при T B = 0 ; 1, в остальных случаях; – в базисе Вебера.

Нечеткая импликация нечетких высказываний A и B обозначается A ⊃ B – это бинарная логическая операция, результат которой является нечетким высказыванием «из A следует B », «если A , то B », значение истинности которого:

T A ⊃ B = max min T A ; T B ; 1 − T A .

Помимо приведенного выше исторически принятого основного определения нечеткой импликации, введенного Заде, могут использоваться следующие альтернативные определения нечеткой импликации, предложенные различными исследователями в области теории нечетких множеств:

T A ⊃ B = max 1 − T A ; T B – Гедель;

T A ⊃ B = min T A ; T B – Мамдани;

T A ⊃ B = min 1 ; 1 − T A + T B – Лукашевич;

T A ⊃ B = min 1 ; T B T A , T A > 0 – Гоген;

T A ⊃ B = min T A + T B ; 1 – Лукашевич-Гилес;

T A ⊃ B = T A T B – Бандлер-Кохоут;

T A ⊃ B = max T A T B ; 1 − T A – Вади;

T A ⊃ B = 1, T A ≤ T B ; T B , T A > T B ; – Бауэр.

Общее число введенных определений нечеткой импликации не ограничивается приведенными выше. Большое количество работ по изучению различных вариантов нечеткой импликации обусловлено тем, что понятие нечеткой импликации является ключевым при нечетких выводах и принятии решений в нечетких условиях. Наибольшее применение при решении прикладных задач нечеткого управления находит нечеткая импликация Заде.

Нечеткая эквивалентность нечетких высказываний A и B обозначается A ≡ B – это бинарная логическая операция, результат которой является нечетким высказыванием « A эквивалентно B », значение истинности которого:

T A ≡ B = min max T ¬ A ; T B ;max T A ; T ¬ B .

Так же, как в классической бинарной логике, в нечеткой логике с помощью рассмотренных выше логических связок можно формировать достаточно сложные логические высказывания.

Источники:

http://digitrode.ru/articles/1242-chto-takoe-nechetkaya-logika-fuzzy-logic-princip-raboty-primery-primenenie.html

http://studfile.net/preview/5944461/page:4/

http://nrsu.bstu.ru/chap26.html

Ссылка на основную публикацию
Статьи на тему: