Дифференциальное уравнение затухающих колебаний для пружинного маятника.

Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания

Рассмотрим свободные затухающие колебания — колебания, амплитуда которых из-за потерь энергии реальной колебательной системой с течением времени уменьшается. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах, а также омических потерь и излучения электромагнитной энергии в электрических колебательных системах.

Закон затухающих колебаний определяется свойствами колебательных систем. Обычно рассматривают линейные системы — идеализированные реальные системы, в которых параметры, определяющие физические свойства системы, в ходе процесса не изменяются. Линейными системами являются, например, пружинный маятник при малых растяжениях пружины (когда справедлив закон Гука), колебательный контур, индуктивность, емкость и сопротивление которого не зависят ни от тока в контуре, ни от напряжения. Различные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями, что п­зволяет подходить к изучению колебаний различной физической природы с единой точки зрения, а также проводить их моделирование, в том числе и на ЭВМ.

Дифференциальное уравнение свободных затухающих колебаний линейной системы задается в виде

(146.1)

где s — колеблющаяся величина, описывающая тот или иной физический процесс, = const — коэффициент затухания, — циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при = 0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы.

Решение уравнения (146.1) рассмотрим в виде

(146.2)

где u = u(t). После нахождения первой и второй производных выражения (146.2) и подстановки их в (146.1) получим

(146.3)

Решение уравнения (146.3) зависит от знака коэффициента перед искомой величиной. Рассмотрим случай, когда этот коэффициент положителен:

(146.4)

(если ( ) > 0, то такое обозначение мы вправе сделать). Тогда получим уравнение типа (142.1)

решением которого является функция

Таким образом, решение уравнения (146.1) в случае малых затуханий (

109.201.137.33 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания;

Рассмотрим свободные затухающие коле­бания— колебания, амплитуда которых из-за потерь энергии реальной колебатель­ной системой с течением времени умень­шается. Простейшим механизмом умень­шения энергии колебаний является ее пре­вращение в теплоту вследствие трения в механических колебательных системах,

а также омических потерь и излучения электромагнитной энергии в электриче­ских колебательных системах.

Закон затухающих колебаний опреде­ляется свойствами колебательных систем. Обычно рассматривают линейные систе­мы— идеализированные реальные систе­мы, в которых параметры, определяющие физические свойства системы, в ходе про­цесса не изменяются. Линейными система­ми являются, например, пружинный маят­ник при малых растяжениях пружины (когда справедлив закон Гука), колеба­тельный контур, индуктивность, емкость и сопротивление которого не зависят ни от тока в контуре, ни от напряжения. Различ­ные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями, что по­зволяет подходить к изучению колебаний различной физической природы с единой точки зрения, а также проводить их моде­лирование, в том числе и на ЭВМ.

Читать еще:  Играть в учительницу. Онлайн игры школа

Дифференциальное уравнение свобод­ных затухающих колебанийлинейной системы задается в виде

где s — колеблющаяся величина, описы­вающая тот или иной физический про­цесс, d=const — коэффициент затухания,w — циклическая частота свободных не­затухающих колебаний той же колебатель­ной системы, т. е. при d=0 (при отсутствии потерь энергии) называется собственной частотойколебательной системы.

Решение уравнения (146.1) рассмот­рим в виде

где u=u(t). После нахождения первой и второй производных выражения (146.2) и подстановки их в (146.1) получим

Решение уравнения (146.3) зависит от знака коэффициента перед искомой вели­чиной. Рассмотрим случай, когда этот ко­эффициент положителен:

w 2 =w 2 -d 2 (146.4)

(если (w 2 -d 2 )>0, то такое обозначение мы вправе сделать). Тогда получим урав­нение типа (142.1)

решением которого является функция и=Аcos(wt+j)

Таким образом, решение уравнения (146.1) в случае малых затуханий (d 2 2 )

— амплитуда затухающих колебаний

a— начальная амплитуда. Зависимость (146.5) показана на рис.208 сплошной линией, а зависимость (146.6) — штри­ховыми линиями. Промежуток времени t=1/d, в течение которого амплитуда за­тухающих колебаний уменьшается в е раз, называется временем релаксации.

Затухание нарушает периодичность колебаний, поэтому затухающие колеба­ния не являются периодическими и, строго говоря, к ним неприменимо понятие перио­да или частоты. Однако если затухание мало, то можно условно пользоваться по­нятием периода как промежутка времени между двумя последующими максимума­ми (или минимумами) колеблющейся фи­зической величины (рис. 208). Тогда пери­од затухающих колебаний с учетом формулы

Если A(t) и A(t+T)— амплитуды двух последовательных колебаний, соответству­ющих моментам времени, отличающимся на период, то отношение

называется декрементом затухания, а его

— логарифмическим декрементом затуха­ния;Ne — число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания — постоянная для данной колебательной системы величина.

Для характеристики колебательной системы пользуются понятием добротно­стиQ, которая при малых значениях лога­рифмического декремента равна

(так как затухание невелико (d 2 2 ), то Т принято равным Т).

Из формулы (146.8) следует, что до­бротность пропорциональна числу колеба­ний Ne, совершаемых системой за время релаксации.

Применим выводы, полученные для свободных затухающих колебаний линей­ных систем, для колебаний различной фи­зической природы — механических (в ка­честве примера рассмотрим пружинный маятник) и электромагнитных (в качестве примера рассмотрим электрический коле­бательный контур).

1. Свободные затухающие колебания пружинного маятника.Для пружинного маятника (см. § 142) массой т, совершаю­щего малые колебания под действием уп­ругой силы F=-kx, сила трения про­порциональна скорости, т. е.

где r — коэффициент сопротивления;знак минус указывает на противоположные на­правления силы трения и скорости.

При данных условиях закон движения маятника будет иметь вид

Используя формулу w=Ök/m (см. (142.2)) и принимая, что коэффици­ент затухания

получим идентичное уравнению (146.1) дифференциальное уравнение затухающих колебаний, маятника:

Из выражений (146.1) и (146.5) вытекает, что маятник колеблется по закону

Читать еще:  К чему снится что падают волосы. Выпадение волос с головы

х=Aе — d t cos(wt+j) с частотой w=Ö(w 2 -r2/4m 2 ) (см. (146.4)).

Добротность пружинного маятника,

согласно (146.8) и (146.10), Q=1/rÖkm.

Дифференциальное уравнение затухающих колебаний для пружинного маятника.

Гармонические колебания

Простейшими из колебаний являются гармонические колебания, т.е. такие колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса.

Механические колебания, которые происходят под действием силы (восстанавливающая сила), пропорциональной смещению и направленной противоположно ему, называют гармоническими колебаниями -диференциальное уравнение, -решение

x- смещение колеблющейся величины от положительного равновесия

66.Основные харак-ки ГК

А – амплитуда- максимальное смещение от положения равновесия

) – фаза колебаний – определяет смещение в данный момент времени

– начальная фаза – определяется положением системы в начальный момент времени

ω – собственная частота колебаний, определяется параметрами системы

Роль начальных условий – А, начальная фаза

67.Способы графического представления колебательных процессов:

68.Векторная диаграмма– способ графического задания колебательного движения в виде вектора.

Возьмем ось, которую обозначим буквой х. Из т. О, взятой на оси, отложим вектор длины а, образующий с осью угол α. Если привести этот вектор во вращение с угловой скоростью ω, то проекция конца вектора будет перемещаться по соси х в пределах от –а до +а, причем координата этой проекции будет изменяться со временем по закону х=а cos (ωt + α).

Следовательно, проекция вектора на ось будет совершать гармоническое колебание с амплитудой, равной длине вектора , с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, образуемому вектором с осью в начальный момент времени.

Т.о. гармоническое колебание может быть задано с помощью вектора, длина кот равна амплитуде колебания, а направление вектора образует с осью х угол, равный начальной фазе колебаний.

69.Пружинный маятник – груз, подвешенный на пружине.

Выведем диф ур-е пружинного маятника

∑F=ma

70.Математическим маятником называют идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке. Отклонение маятника от положения равновесия будем характеризовать углом , образованным нитью с вертикалью. При отклонении маятника от положения равновесия возникает вращающий момент М, равный M=-mgl sin .Он имеет такое направление, что стремится вернуть маятник в положение равновесия.

71.Физический маятник – любое твердое тело, имеющее ось вращения, которая не совпадает с центром масс.

Вывод дифференциального ур-я колебаний:

72.Приведенная длина физического маятника – длина такого матем маятника, период колебаний которого совпадает с периодом данного физического маятника.

собственная частота для пружинного маятника

— собственная частота математического маятника

73. Периодические или почти периодические изменения заряда, силы тока и напряжения называются электромагнитными колебаниями.

Простейшая система, в которой могут происходить свободные электромагнитные колебания, состоит из конденсатора и катушки, присоединённой к его обкладкам. Такая система называется колебательным контуром.

Частота колебаний – это число колебаний в единицу времени. υ = 1/T

Продолжительность одного полного колебания называется периодом колебания. T = 1/υ

,

где L – индуктивность, С — электроемкость

74.Сложение коллинеарных колебаний одинаковой частоты:

Смещение х колеблющегося тела будет суммой смещений х1 и х2, которые запишутся след образом: х11 cos (ωt+α1) х22 cos (ωt+α2)

Читать еще:  Во сколько надо есть. Режим питания

Представим оба колебания с помощью векторов а1 и а2. Построим по правилам сложения векторов результирующий вектор а. Проекция этого вектора на ось х равна сумме проекций слагаемых векторов: х1=х1+х2. След-но, вектор а представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью ω0, как и векторы а1 и а2, так что результирующее движение будет гармоническим колебанием с частотой ω0, амплитудой а и начальной фазой α.

75. Пусть маленькое тело колеблется на взаимно-перпендикулярных пружинках одинаковой жесткости. По какой траектории будет двигаться это тело? Это уравнения траектории в параметрическом виде.

Для получения явной зависимости между координатами x и y надо из уравнений исключить параметр t. Из первого уравнения:

Из второго:

После подстановки:

Избавимся от корня: — это уравнение эллипса.

76.В реальных условиях всегда присутствуют рассеянные силы (десепативные?), приводящие к уменьшению энергии в контуре. Рассмотрим частный случай механических колебаний при наличии силы вязкого трения.

-дифференциальное уравнение затухающих колебаний

, — амплитуда затухающих колебаний

77.Основные параметры затухающих колебаний.

ω0- собственная частота колебательной системы, без затухания,β — коэффициент затухания- характеризует скорость затухания

— время релаксации, в течение которого амплитуда уменьшается в е раз.

Добротность — показатель скорости ухода энергии из колебательной системы

Q=2π , где Е-энергия, запасенная в контуре, — энергия за период. Q=πNe, гдеNe – кол-во колебаний за время релаксации.

Дифференциальное уравнение затухающих колебаний для пружинного маятника.

79.Дифференциальное уравнение для затухающих колебаний эм контура

Его решением является функция

q(t)=qe — βtcos (ωt+ ), где частота колебаний ω= Для колебательного контура

80.Амплитуда и частота затухающих колебаний , — амплитуда затухающих колебаний

ω0- собственная частота колебательной системы, без затухания.Частота затухающих колебаний меньше чем собственная частота.

Амплитуда уменьшается по экспоненциальному закону

81.Апериоднический и критический режимы:

-периодический или колебательный режимзатухания незначительные, оно мало и этот колебательный процесс можно характеризовать параметрами обычного гармонического колебания без затухания

-критический режим ,

-апериодический режим (непериодический)

утечка энергии происходит так быстро, что система не способна пройти положение равновесия. — не имеет смысла

82.

f – амплитуда вынужденной силы — частота вынужденной силы

Решение дифференциального уравнения вынужденных колебаний — ξ(t) — состоит из двух слагаемых: ,где

здесь — — частота затухающих колебаний.

τ- переходный режим, после него колебания устанавливаются с частотой вынуждающей силы.

83. Вынужденные колебания – совершаются в колебательных системах под действием внешней периодической силы, меняющейся по гармоническому закону:

f – амплитуда вынужденной силы

— частота вынужденной силы

Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы.

Резонанс – явление резкого возрастания амплитуды при частоте вынужденных колебаний близкой к собственной.

-резонансная частота

84.Амплитудно – частотные характеристики. В контуре с большой добротностью амплитуда резонанса велика, но мала полоса пропускания, а в контуре с резкой добротностью амплитуда мала, но большая ширина полосы пропускания в контурах, где коэф затухания близок к критическому.

Источники:

http://studopedia.ru/4_71126_differentsialnoe-uravnenie-svobodnih-zatuhayushchih-kolebaniy-mehanicheskih-i-elektromagnitnih-i-ego-reshenie-avtokolebaniya.html

http://studopedia.su/15_123787_differentsialnoe-uravnenie-svobodnih-zatuhayushchih-kolebaniy-mehanicheskih-i-elektromagnitnih-i-ego-reshenie-avtokolebaniya.html

http://megalektsii.ru/s26945t9.html

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector
×
×
×
×