Решить систему комплексных уравнений. Решение задач с комплексными числами

Решение задач с комплексными числами

Основные определения и операции

Для решения задач с комплексными числами необходимо разобраться с основными определениями. Главная задача данной обзорной статьи — объяснить, что же такое комплексные числа, и предъявить методы решения основных задач с комплексными числами. Итак, комплексным числом будем называть число вида z = a + bi, где a, b — вещественные числа, которые называют действительной и мнимой частью комплексного числа соответственно и обозначают a = Re(z), b=Im(z).
i называется мнимой единицей. i 2 = -1. В частности, любое вещественное число можно считать комплексным: a = a + 0i, где a — вещественное. Если же a = 0 и b ≠ 0, то число принято называть чисто мнимым.

Теперь введем операции над комплексными числами.
Рассмотрим два комплексных числа z1 = a1 + b1i и z2 = a2 + b2i.

  • Сумма комплексных чисел — комплексное число
  • Разность
  • Произведение
  • Отношение

Рассмотрим z = a + bi.

  • Сопряженным к z называется комплексное число:
    z1 = a1 + b1i
  • Модулем z называется вещественно число:

Множество комплексных чисел расширяет множество вещественных чисел, которое в свою очередь расширяет множество рациональных чисел и т.д. Эту цепочку вложений можно рассмотреть на рисунке: N – натуральные числа, Z — целые, Q – рациональные, R – вещественные, C – комплексные.

Представление комплексных чисел

Алгебраическая форма записи.

Рассмотрим комплексное число z = a + bi , такая форма записи комплексного числа называется алгебраической. Эту форму записи мы уже подробно разобрали в предыдущем разделе. Довольно часто используют следующий наглядный рисунок

Тригонометрическая форма.

Из рисунка видно, что число z = a + bi можно записать иначе. Очевидно, что a = rcos(φ), b = rsin(φ), r=|z|, следовательно z = rcos(φ) + rsin(φ)i, φ ∈ (-π; π) называется аргументом комплексного числа. Такое представление комплексного числа называется тригонометрической формой. Тригонометрическая форма записи порой очень удобна. Например, ее удобно использовать для возведения комплексного числа в целую степень, а именно, если z = rcos(φ) + rsin(φ)i, то z n = r n cos(nφ) + r n sin(nφ)i, эта формула называется формулой Муавра.

Показательная форма.

Рассмотрим z = rcos(φ) + rsin(φ)i — комплексное число в тригонометрической форме, запишем в другом виде z = r(cos(φ) + sin(φ)i) = re iφ , последнее равенство следует из формулы Эйлера, таким образом мы получили новую форму записи комплексного числа: z = re iφ , которая называется показательной. Такая форма записи так же очень удобна для возведения комплексного числа в степень: z n = r n e inφ , здесь n не обязательно целое, а может быть произвольным вещественным числом. Такая форма записи довольно часто используется для решения задач.

Основная теорема высшей алгебры

Представим, что у нас есть квадратное уравнение x 2 + x + 1 = 0 . Очевидно, что дискриминант этого уравнения отрицателен и вещественных корней оно не имеет, но оказывается, что это уравнение имеет два различных комплексных корня. Так вот, основная теорема высшей алгебры утверждает, что любой многочлен степени n имеет хотя бы один комплексный корень. Из этого следует, что любой многочлен степени n имеет ровно n комплексных корней с учетом их кратности. Эта теорема является очень важным результатом в математике и широко применяется. Простым следствием из этой теоремы является такой результат: существует ровно n различных корней степени n из единицы.

Основные типы задач

В этом разделе будут рассмотрены основные типы простых задач на комплексные числа. Условно задачи на комплексные числа можно разбить на следующие категории.

  • Выполнение простейших арифметических операций над комплексными числами.
  • Нахождение корней многочленов в комплексных числах.
  • Возведение комплексных чисел в степень.
  • Извлечение корней из комплексных чисел.
  • Применение комплексных чисел для решения прочих задач.

Теперь рассмотрим общие методики решения этих задач.

Выполнение простейших арифметических операций с комплексными числами происходит по правилам описанным в первом разделе, если же комплексные числа представлены в тригонометрической или показательной формах, то в этом случае можно перевести их в алгебраическую форму и производить операции по известным правилам.

Нахождение корней многочленов как правило сводится к нахождению корней квадратного уравнения. Предположим, что у нас есть квадратное уравнение, если его дискриминант неотрицателен, то его корни будут вещественными и находятся по известной формуле. Если же дискриминант отрицателен, то есть D = -1∙a 2 , где a — некоторое число, то можно представить дискриминант в виде D = (ia) 2 , следовательно √D = i|a|, а дальше можно воспользоваться уже известной формулой для корней квадратного уравнения.

Пример. Вернемся к упомянутому выше квадратному уравнению x 2 + x + 1 = 0 .
Дискриминант — D = 1 — 4 ∙ 1 = -3 = -1(√3) 2 = (i√3) 2 .
Теперь с легкостью найдем корни:

Возведение комплексных чисел в степень можно выполнять несколькими способами. Если требуется возвести комплексное число в алгебраической форме в небольшую степень (2 или 3), то можно сделать это непосредственным перемножением, но если степень больше (в задачах она часто бывает гораздо больше), то нужно записать это число в тригонометрической или показательной формах и воспользоваться уже известными методами.

Читать еще:  Как сшить текстильную куклу с длинной шеей. Текстильная кукла. Мастер-класс

Пример. Рассмотрим z = 1 + i и возведем в десятую степень.
Запишем z в показательной форме: z = √2 e iπ/4 .
Тогда z 10 = (√2 e iπ/4 ) 10 = 32 e 10iπ/4 .
Вернемся к алгебраической форме: z 10 = -32i .

Извлечение корней из комплексных чисел является обратной операцией по отношению к операции возведения в степень, поэтому производится аналогичным образом. Для извлечения корней довольно часто используется показательная форма записи числа.

Пример. Найдем все корни степени 3 из единицы. Для этого найдем все корни уравнения z 3 = 1 , корни будем искать в показательной форме.
Подставим в уравнение: r 3 e 3iφ = 1 или r 3 e 3iφ = e 0 .
Отсюда: r = 1 , 3φ = 0 + 2πk , следовательно φ = 2πk/3 .
Различные корни получаются при φ = 0, 2π/3, 4π/3 .
Следовательно 1 , e i2π/3 , e i4π/3 — корни.
Или в алгебраической форме:

Последний тип задач включается в себя огромное множество задач и нет общих методов их решения. Приведем простой пример такой задачи:

Найти сумму sin(x) + sin(2x) + sin(2x) + … + sin(nx) .

Хоть в формулировке этой задачи и не идет речь о комплексных числах, но с их помощью ее можно легко решить. Для ее решения используются следующие представления:

Если теперь подставить это представление в сумму, то задача сводится к суммированию обычной геометрической прогрессии.

Заключение

Комплексные числа широко применяются в математике, в этой обзорной статье были рассмотрены основные операции над комплексным числами, описаны несколько типов стандартных задач и кратко описаны общие методы их решения, для более подробного изучения возможностей комплексных чисел рекомендуется использовать специализированную литературу.

Литература

Здесь конкретных рекомендаций не будет, так как почти во всех задачниках по высшей математике есть задачи на комплексные числа.

Система уравнений с комплексными числами примеры. Решение задач с комплексными числами

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

КАФЕДРА АГЛЕБРЫ И ГЕОМЕТРИИ

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по специальности 050201.65 математика

(с дополнительной специальностью 050202.65 информатика)

Выполнила: студентка 5 курса

2. Комплексные числа (избранные задачи)

2.1. Комплексные числа в алгебраической форме….……. ……….….

2.2. Геометрическая интерпретация комплексных чисел…………..…

2.3. Тригонометрическая форма комплексных чисел

2.4. Приложение теории комплексных чисел к решению уравнений 3-й и 4-й степени……………..………………………………………………………

2.5. Комплексные числа и параметры………. ……………………. ….

В программе математики школьного курса теория чисел вводится на примерах множеств натуральных чисел, целых, рациональных, иррациональных, т.е. на множестве действительных чисел, изображения которых заполняют всю числовую ось. Но уже в 8 классе запаса действительных чисел не хватает, решая квадратные уравнения при отрицательном дискриминанте. Поэтому было необходимо пополнить запас действительных чисел при помощи комплексных чисел, для которых квадратный корень из отрицательного числа имеет смысл.

Выбор темы «Комплексные числа», как темы моей выпускной квалификационной работы, заключается в том, что понятие комплексного числа расширяет знания учащихся о числовых системах, о решении широкого класса задач как алгебраического, так и геометрического содержания, о решении алгебраических уравнений любой степени и о решение задач с параметрами.

В данной дипломной работе рассмотрено решение 82-х задач.

В первой части основного раздела «Комплексные числа» приведены решения задач с комплексными числами в алгебраической форме, определяются операции сложения, вычитания, умножения, деления, операция сопряжения для комплексных чисел в алгебраической форме, степень мнимой единицы, модуль комплексного числа, а также излагается правило извлечения квадратного корня из комплексного числа.

Во второй части решаются задачи на геометрическую интерпретацию комплексных чисел в виде точек или векторов комплексной плоскости.

В третьей части рассмотрены действия над комплексными числами в тригонометрической форме. Используются формулы: Муавра и извлечение корня из комплексного числа.

Четвертая часть посвящена решению уравнений 3-й и 4-й степеней.

При решении задач последней части «Комплексные числа и параметры» используются и закрепляются сведения, приведенные в предыдущих частях. Серия задач главы посвящена определению семейств линий в комплексной плоскости, заданных уравнениями (неравенствами) с параметром. В части упражнений нужно решить уравнения с параметром (над полем С). Есть задания, где комплексная переменная удовлетворяет одновременно ряду условий. Особенностью решения задач этого раздела является сведение многих из них к решению уравнений (неравенств, систем) второй степени, иррациональных, тригонометрических с параметром.

Особенностью изложения материала каждой части является первоначальный ввод теоретических основ, а в последствии практическое их применение при решении задач.

В конце дипломной работы представлен список используемой литературы. В большинстве из них достаточно подробно и доступно изложен теоретический материал, рассмотрены решения некоторых задач и даны практические задания для самостоятельного решения. Особое внимание хочется обратить на такие источники, как:

1. Гордиенко Н.А., Беляева Э.С., Фирстов В.Е., Серебрякова И.В. Комплексные числа и их приложения: Учебное пособие. . Материал учебного пособия изложен в виде лекционных и практических занятий.

2. Шклярский Д.О., Ченцов Н.Н., Яглом И.М. Избранные задачи и теоремы элементарной математики. Арифметика и алгебра. Книга содержит 320 задач, относящихся к алгебре, арифметике и теории чисел. По своему характеру эти задачи значительно отличаются от стандартных школьных задач.

2. Комплексные числа (избранные задачи)

2.1. Комплексные числа в алгебраической форме

Решение многих задач математики, физики сводится к решению алгебраических уравнений, т.е. уравнений вида

Читать еще:  Куприн александр гранатовый браслет. Гранатовый браслет

где a0 , a1 , …, an действительные числа. Поэтому исследование алгебраических уравнений является одним из важнейших вопросов в математике. Например, действительных корней не имеет квадратное уравнение с отрицательным дискриминантом. Простейшим таким уравнением является уравнение

Для того чтобы это уравнение имело решение, необходимо расширить множество действительных чисел путем присоединения к нему корня уравнения

Обозначим этот корень через

. Таким образом, по определению , или ,

. называется мнимой единицей. С его помощью и с помощью пары действительных чисел и составляется выражение вида .

Полученное выражение назвали комплексными числами, поскольку они содержали как действительную, так и мнимую части.

Итак, комплексными числами называются выражения вида

, и – действительные числа, а – некоторый символ, удовлетворяющий условию . Число называется действительной частью комплексного числа , а число – его мнимой частью. Для их обозначения используются символы , .

Комплексные числа вида

являются действительными числами и, следовательно, множество комплексных чисел содержит в себе множество действительных чисел.

Комплексные числа вида

называются чисто мнимыми. Два комплексных числа вида и называются равными, если равны их действительные и мнимые части, т.е. если выполняются равенства , .

Алгебраическая запись комплексных чисел позволяет производить операции над ними по обычным правилам алгебры.

Сервис для решения уравнений онлайн поможет вам решить любое уравнение. Используя наш сайт, вы получите не просто ответ уравнения, но и увидите подробное решение, то есть пошаговое отображение процесса получения результата. Наш сервис будет полезен старшеклассникам общеобразовательных школ и их родителям. Ученики смогут подготовиться к контрольным, экзаменам, проверить свои знания, а родители – проконтролировать решение математических уравнений своими детьми. Умение решать уравнения – обязательное требование к школьникам. Сервис поможет вам самообучаться и повышать уровень знаний в области математических уравнений. С его помощью вы сможете решить любое уравнение: квадратное, кубическое, иррациональное, тригонометрическое и др. Польза онлайн сервиса бесценна, ведь кроме верного ответа вы получаете подробное решение каждого уравнения. Преимущества решения уравнений онлайн. Решить любое уравнение онлайн на нашем сайте вы можете абсолютно бесплатно. Сервис полностью автоматический, вам ничего не придется устанавливать на свой компьютер, достаточно будет только ввести данные и программа выдаст решение. Любые ошибки в расчетах или опечатки исключены. С нами решить любое уравнение онлайн очень просто, поэтому обязательно используйте наш сайт для решения любых видов уравнений. Вам необходимо только ввести данные и расчет будет выполнен за считанные секунды. Программа работает самостоятельно, без человеческого участия, а вы получаете точный и подробный ответ. Решение уравнения в общем виде. В таком уравнении переменные коэффициенты и искомые корни связаны между собой. Старшая степень переменной определяет порядок такого уравнения. Исходя из этого, для уравнений используют различные методы и теоремы для нахождения решений. Решение уравнений данного типа означает нахождение искомых корней в общем виде. Наш сервис позволяет решить даже самое сложное алгебраическое уравнение онлайн. Вы можете получить как общее решение уравнения, так и частное для указанных вами числовых значений коэффициентов. Для решения алгебраического уравнения на сайте достаточно корректно заполнить всего два поля: левую и правую части заданного уравнения. У алгебраических уравнений с переменными коэффициентами бесконечное количество решений, и задав определенные условия, из множества решений выбираются частные. Квадратное уравнение. Квадратное уравнение имеет вид ax^2+bx+с=0 при а>0. Решение уравнений квадратного вида подразумевает нахождение значений x, при которых выполняется равенство ax^2+bx+с=0. Для этого находится значение дискриминанта по формуле D=b^2-4ac. Если дискриминант меньше нуля, то уравнение не имеет действительных корней (корни находятся из поля комплексных чисел), если равен нулю, то у уравнения один действительный корень, и если дискриминант больше нуля, то уравнение имеет два действительных корня, которые находятся по формуле: D= -b+-sqrt/2а. Для решения квадратного уравнения онлайн вам достаточно ввести коэффициенты такого уравнения (целые числа, дроби или десятичные значения). При наличии знаков вычитания в уравнении необходимо поставить минус перед соответствующими членами уравнения. Решить квадратное уравнение онлайн можно и в зависимости от параметра, то есть переменных в коэффициентах уравнения. С этой задачей отлично справляется наш онлайн сервис по нахождению общих решений. Линейные уравнения. Для решения линейных уравнений (или системы уравнений) на практике используются четыре основных метода. Опишем каждый метод подробно. Метод подстановки. Решение уравнений методом подстановки требует выразить одну переменную через остальные. После этого выражение подставляется в другие уравнения системы. Отсюда и название метода решения, то есть вместо переменной подставляется ее выражение через остальные переменные. На практике метод требует сложных вычислений, хотя и простой в понимании, поэтому решение такого уравнения онлайн поможет сэкономить время и облегчить вычисления. Вам достаточно указать количество неизвестных в уравнении и заполнить данные от линейных уравнений, далее сервис сделает расчет. Метод Гаусса. В основе метода простейшие преобразования системы с целью прийти к равносильной системе треугольного вида. Из нее поочередно определяются неизвестные. На практике требуется решить такое уравнение онлайн с подробным описанием, благодаря чему вы хорошо усвоите метод Гаусса для решения систем линейных уравнений. Запишите в правильном формате систему линейных уравнений и учтите количество неизвестных, чтобы безошибочно выполнить решение системы. Метод Крамера. Этим методом решаются системы уравнений в случаях, когда у системы единственное решение. Главное математическое действие здесь – это вычисление матричных определителей. Решение уравнений методом Крамера проводится в режиме онлайн, результат вы получаете мгновенно с полным и подробным описанием. Достаточно лишь заполнить систему коэффициентами и выбрать количество неизвестных переменных. Матричный метод. Этот метод заключается в собрании коэффициентов при неизвестных в матрицу А, неизвестных – в столбец Х, а свободных членов в столбец В. Таким образом система линейных уравнений сводится к матричному уравнению вида АхХ=В. У этого уравнения единственное решение только если определитель матрицы А отличен от нуля, иначе у системы нет решений, либо бесконечное количество решений. Решение уравнений матричным методом заключается в нахождении обратной матрицы А.

Читать еще:  Видеть во сне монеты собирать. Находить монеты во сне

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Для наглядности решим такое задание:

Вычислить [ (z_1cdot z_2)^<10>,] если

В первую очередь обратим внимание на то, что одно число представлено в алгебраической, другое — в тригонометрической форме. Его необходимо упростить и привести к следующему виду

Выражение говорит о том, что в первую очередь делаем умножение и возведение в 10-ю степень по формуле Муавра. Эта формула сформулирована для тригонометрической формы комплексного числа. Получим:

Придерживаясь правил умножения комплексных чисел в тригонометрической форме, сделаем следующее:

Делая дробь [frac<25><3>=8frac<1><3>] правильной, приходим к выводу, что можно «скрутить» 4 оборота [(8pi рад.):]

Данное уравнение можно решить еще одним способом, который сводится к тому, чтобы привести 2 -е число в алгебраическую форму, после чего выполнить умножение в алгебраической форме, перевести результат в тригонометрическую форму и применить формулу Муавра:

Комплексные числа

В математике кроме натуральных, рациональных и вещественных чисел имеется ещё один вид, называемый комплексными числами. Такое множество принято обозначать символом $ mathbb $.

Рассмотрим, что из себя представляет комплексное число. Запишем его таким образом: $ z = a + ib $, в котором мнимая единица $ i = sqrt <-1>$, числа $ a,b in mathbb $ вещественные.

Если положить $ b = 0 $, то комплексное число превращается в вещественное. Таким образом, можно сделать вывод, что действительные числа это частный случай комплексных и записать это в виде подмножества $ mathbb subset mathbb $. К слову говоря также возможно, что $ a = 0 $.

Принято записывать мнимую часть комплексного числа как $ Im(z) = b $, а действительную $ Re(z) = a $.

Введем понятие комплексно-сопряженных чисел. К каждому комплексному числу $ z = a+ib $ существует такое, что $ overline = a-ib $, которое и называется сопряженным. Такие числа отличаются друг от друга только знаками между действительной и мнимой частью.

Формы

Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:

  1. Алгебраическая $ z = a+ib $
  2. Показательная $ z = |z|e^ $
  3. Тригонометрическая $ z = |z|cdot(cos(varphi)+isin(varphi)) $

Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.

Изображение

Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:

Видим, что $ a,b in mathbb $ расположены на соответствующих осях плоскости.

Комплексное число $ z = a+ib $ представляется в виде вектора $ overline $.

Аргумент обозначается $ varphi $.

Модуль $ |z| $ равняется длине вектора $ overline $ и находится по формуле $ |z| = sqrt $

Аргумент комплексного числа $ varphi $ нужно находить по различным формулам в зависимости от полуплоскости, в которой лежит само число.

Операции

Над комплексными числами можно проводить различные операции, а именно:

  • Складывать и вычитать
  • Умножать и делить
  • Извлекать корни и возводить в степень
  • Переводить из одной формы в другую

Для нахождения суммы и разности складывается и вычитаются только соответствующие друг другу члены. Мнимая часть только с мнимой, а действительная только с действительной:

$$ z_1 + z_2 = (a_1+ib_1) + (a_2+ib_2) = (a_1 + a_2)+i(b_1 + b_2) $$

$$ z_1 — z_2 = (a_1+ib_1) — (a_2+ib_2) = (a_1 — a_2)+i(b_1 — b_2) $$

Умножение в алгебраической форме:

$$ z_1 cdot z_2 = (a_1+ib_1) cdot (a_2+ib_2) = (a_1 a_2 — b_1 b_2)+i(a_1 b_2 + a_2 b_1) $$

Умножение в показательной форме:

Деление в алгебраической форме:

Деление в показательной форме:

Для возведения в степень необходимо умножить комплексное число само на себя необходимое количество раз, либо воспользоваться формулой Муавра:

$$ z^n = |z|^n(cos nvarphi+isin nvarphi) $$

Для извлечения корней необходимо также воспользоваться формулой Муавра:

Так же теория комплексных чисел помогает находить корни многочленов. Например, в квадратном уравнении, если $ D<0 $, то вещественных корней нет, но есть комплексные. В последнем примере рассмотрен данный случай.

Рассмотрим на практике комплексные числа: примеры с решением.

Источники:

http://reshatel.org/reshenie-zadach/complex/

http://drafteea.ru/the-delay/sistema-uravnenii-s-kompleksnymi-chislami-primery-reshenie-zadach-s/

http://xn--24-6kcaa2awqnc8dd.xn--p1ai/kompleksnye-chisla.html

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector
×
×
×
×