Как получить линейчатый спектр поглощения натрия. Оптика

Как получить линейчатый спектр поглощения натрия. Оптика

1. Как выглядит сплошной спектр?

Сплошной (иначе непрерывный) спектр — это сплошная полоса, в которой представлены все цвета, плавно переходящие один в другой.

При пропускании солнечного света через призму получался спектр в виде сплошной полосы.
В ней были представлены все цвета (т. е. волны всех частот) видимого диапазона), плавно переходящие один в другой.

2. Какие тела дают сплошной спектр? Приведите примеры.

Сплошной спектр характерен для твёрдых и жидких излучающих тел, имеющих температуру порядка нескольких тысяч градусов Цельсия. Сплошной спектр дают также светящиеся газы и пары, если они находятся под очень высоким давлением (т. е. если силы взаимодействия между их молекулами достаточно велики).

Свет от раскаленной нити электрической лампы, светящаяся поверхность расплавленного металла, пламя свечи.

3. Как выглядят линейчатые спектры?

Линейчатые спектры представляют собой наборы отдельных линий определенных цветов.
Разные химические элементы дают свои собственные наборы отдельных линий.

5. Каким образом можно получить линейчатый спектр испускания натрия?

Если внести в пламя спиртовки кусочек поваренной соли, то пламя окрасится в жёлтый цвет, а в спектре, наблюдаемом с помощью спектроскопа, будут видны две близко расположенные жёлтые линии, характерные для спектра паров натрия.

Под действием высокой температуры молекулы NaCl распались на атомы натрия и хлора.
Свечение атомов хлора возбудить гораздо труднее, чем атомов натрия, поэтому в данном опыте линии хлора не видны.

6. От каких источников света получаются линейчатые спектры?

Линейчатые спектры получают от газов и паров малой плотности, при которой свет излучается изолированными атомами.

7. Каков механизм получения линейчатых спектров поглощения (т. е. что нужно сделать, чтобы получить их)?

Линейчатые спектры поглощения дают газы малой плотности, состоящие из изолированных атомов, когда сквозь них проходит свет от яркого и более горячего (по сравнению с температурой самих газов) источника, дающего непрерывный спектр.

8. Как получить линейчатый спектр поглощения натрия и как он выглядит?

Линейчатый спектр поглощения натрия можно получить, если пропустить свет от лампы накаливания через сосуд с парами натрия, температура которых ниже температуры нити лампы накаливания.
В этом случае в сплошном спектре света от лампы появится узкая чёрная линия как раз в том месте, где располагается жёлтая линия в спектре испускания натрия.
Это и будет линейчатый спектр поглощения натрия.
Линии поглощения атомов натрия точно соответствуют его линиям испускания.

Читать еще:  Интересное в сети! Еще интересные световые явления.

8. В чем заключается суть закона Кирхгофа, касающегося линейчатых спектров излучения и поглощения?

Общий для всех химических элементов закон был открыт в середине XIX в. немецким физиком Густавом Кирхгофом:

Атомы данного элемента поглощают световые волны тех же самых частот, на которых они излучают.

Спектр атомов каждого химического элемента уникален.
Не существует двух химических элементов, атомы которых излучали бы одинаковый набор спектральных линий.

Линейчатые спектры

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: линейчатые спектры.

Если пропустить солнечный свет через стеклянную призму или дифракционную решётку, то возникнет хорошо известный вам непрерывный спектр (рис. 1 )(Изображения на рис. 1 , 2 и 3 взяты с сайта www.nanospectrum.ru):

Рис. 1. Непрерывный спектр

Спектр называется непрерывным потому, что в нём присутствуют все длины волн видимого диапазона — от красной границы до фиолетовой. Мы наблюдаем непрерывный спектр в виде сплошной полосы, состоящей из разных цветов.

Непрерывным спектром обладает не только солнечный свет, но и, например, свет электрической лампочки. Вообще, оказывается, что любые твёрдые и жидкие тела (а также весьма плотные газы), нагретые до высокой температуры, дают излучение с непрерывным спектром.

Ситуация качественно меняется, когда мы наблюдаем свечение разреженных газов. Спектр перестаёт быть непрерывным: в нём появляются разрывы, увеличивающиеся по мере разрежения газа. В предельном случае чрезвычайно разреженного атомарного газа спектр становится линейчатым — состоящим из отдельных достаточно тонких линий.

Мы рассмотрим два типа линейчатых спектров: спектр испускания и спектр поглощения.

Спектр испускания

Предположим, что газ состоит из атомов некоторого химического элемента и разрежен настолько, что атомы почти не взаимодействуют друг с другом. Раскладывая в спектр излучение такого газа (нагретого до достаточно высокой температуры), мы увидим примерно следующую картину (рис. 2 ):

Рис. 2. Линейчатый спектр испускания

Этот линейчатый спектр, образованный тонкими изолированными разноцветными линиями, называется спектром испускания.

Любой атомарный разреженный газ излучает свет с линейчатым спектром. Более того, для каждого химического элемента спектр испускания оказывается уникальным, играя роль «удостоверения личности» этого элемента. По набору линий спектра испускания можно однозначно сказать, с каким химическим элементом мы имеем дело.

Поскольку газ разрежен и атомы мало взаимодействуют друг с другом, мы можем заключить, что свет излучают атомы сами по себе. Таким образом, атом характеризуется дискретным, строго определённым набором длин волн излучаемого света. У каждого химического элемента, как мы уже сказали, этот набор свой.

Спектр поглощения

Атомы излучают свет, переходя из возбуждённого состояния в основное. Но вещество может не только излучать, но и поглощать свет. Атом, поглощая свет, совершает обратный процесс — переходит из основного состояния в возбуждённое.

Читать еще:  Святой Николай Чудотворец. Иконография

Снова рассмотрим разреженный атомарный газ, но на сей раз в холодном состоянии (при достаточно низкой температуре). Свечения газа мы не увидим; не будучи нагретым, газ не излучает — атомов в возбуждённом состоянии оказывается для этого слишком мало.

Если сквозь наш холодный газ пропустить свет с непрерывным спектром, то можно увидеть что-то вроде этого (рис. 3 ):

Рис. 3. Линейчатый спектр поглощения

На фоне непрерывного спектра падающего света появляются тёмные линии, которые образуют так называемый спектр поглощения. Откуда берутся эти линии?

Под действием падающего света атомы газа переходят в возбуждённое состояние. При этом оказывается, что для возбуждения атомов годятся не любые длины волн, а лишь некоторые, строго определённые для данного сорта газа. Вот именно эти длины волн газ и «забирает себе» из проходящего света.

Более того, газ изымает из непрерывного спектра ровно те самые длины волн, которые излучает сам! Тёмные линии в спектре поглощения газа в точности соответствуют ярким линиям его спектра испускания. На рис. 4 сопоставлены спектры испускания и поглощения разреженных паров натрия (изображение с сайта www.nt.ntnu.no):

Рис. 4. Спектры поглощения и испускания для натрия

Впечатляющее совпадение линий, не правда ли?

Глядя на спектры испускания и поглощения, физики XIX века пришли к выводу, что атом не является неделимой частицей и обладает некоторой внутренней структурой. В самом деле, что-то ведь внутри атома должно обеспечивать механизм излучения и поглощения света!

Кроме того, уникальность атомных спектров говорит о том, что этот механизм различен у атомов разных химических элементов; стало быть, атомы разных химических элементов должны отличаться по своему внутреннему устройству.

Строению атома будет посвящён следующий листок.

Спектральный анализ

Использование линейчатых спектров в качестве уникальных «паспортов» химических элементов лежит в основе спектрального анализа — метода исследования химического состава вещества по его спектру.
Идея спектрального анализа проста: спектр излучения исследуемого вещества сопоставляется с эталонными спектрами химических элементов, после чего делается вывод о присутствии или отсутствии того или иного химического элемента в данном веществе. При определённых условиях методом спектрального анализа можно определить химический состав не только качественно, но и количественно.

В результате наблюдения различных спектров были открыты новые химические элементы.

Первыми из таких элементов были цезий и рубидий; они получили название по цвету линий своего спектра (В спектре цезия наиболее выражены две линии небесно-синего цвета, по-латыни называемого caesius. Рубидий же даёт две характерные линии рубинового цвета).

В 1868 году в спектре Солнца были обнаружены линии, не соответствующие ни одному из известных химических элементов. Новый элемент был назван гелием (от греческого гелиос — солнце). Впоследствии гелий был обнаружен в атмосфере Земли.

Читать еще:  Кто находится на 9 круге ада. Для всех и обо всем

Вообще, спектральный анализ излучения Солнца и звёзд показал, что все входящие в их состав входят элементы имеются и на Земле. Таким образом, оказалось, что все объекты Вселенной собраны из одного и того же «набора кирпичиков».

Вопросы § 50

Физика А.В. Перышкин

1.Как выглядит сплошной спектр? Какие тела дают сплошной спектр? Приведите примеры.

Сплошной спектр представляет собой по­лосу, состоящую из всех цветов радуги, плавно переходящих друг в друга.

Сплошной спектр получается от света твер­дых и жидких тел (нить электрической лампы, расплавленный металл, пламя свечи), с температу­рой несколько тысяч градусов Цельсия. Его также дают светящиеся газы и пары при высоком дав­лении.

2. Как выглядят линейчатые спектры? От каких источников света получаются линейчатые спектры?

Линейчатые спектры состоят из отдельных линий определенных цветов.
Линейчатые спектры характерны для светя­щихся газов малой плотности.

3. Каким образом можно получить линейчатый спектр испускания натрия?

Для этого надо пропустить свет от лампы накаливания через сосуд с парами натрия. В ре­зультате этого в сплошном спектре света от лампы накаливания появятся узкие черные линии, в том месте где находятся желтые линии в спектре ис­пускания натрия.

4. Опишите механизм получения линейчатых спектров поглощения.

Линейчатые спектры поглощения получают при пропускании сквозь газы малой плотности свет от более яркого и более горячего источника.

5. В чём заключается суть закона Кирхгофа, касающегося линейчатых спектров испускания и поглощения?

Закон Киргофа гласит, что атомы данного элемента поглощают и излучают световые волны на одних и тех же частотах.

6. Что такое спектральный анализ и как он проводится?

Метод определения химического состава ве­щества по его линейчатому спектру называется спектральным анализом.

Исследуемое вещество в виде порошка или аэрозоля помещают в высокотемпературный источ­ник света — пламя или электрический разряд, из-за чего оно переходит в состояние атомарного газа и у него возбуждаются атомы, которые испускают или поглощают электромагнитное излучение в строго определенном диапазонах частот. Затем получен­ную с помощью спектрографа фотографию спектра атомов анализируют.

По расположению линий в спектре узнают из каких элементов состоит данное вещество.

Сравнивая относительные интенсивности ли­ний спектра оценивают количественное содержание элементов.

7. Расскажите о применении спектрального анализа.

Спектральный анализ применяется в метал­лургии, машиностроении, атомной индустрии, гео­логии, археологии, криминалистике и др. сферах. Особенно интересно использование спектрального анализа в астрономии, с помощью него определяют химический состав звезд и атмосфер планет, их температуру. По смещениям спектральных линий галактик научились определять их скорость.

Источники:

http://class-fizika.ru/u9-63.html

http://ege-study.ru/ru/ege/materialy/fizika/linejchatye-spektry/

http://kupuk.net/9-klass/fizika-a-v-peryishkin/voprosyi-50/

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector