Все кислоты формулы и названия. Формулы и названия основных кислот

Неорганические кислоты

Содержание

  1. Классификация
  2. Получение
  3. Свойства
  4. Что мы узнали?

Бонус

  • Тест по теме

Классификация

Основная формула минеральных кислот – HnAc, где Ac – кислотный остаток. В зависимости от состава кислотного остатка выделяют два типа кислот:

  • кислородные, содержащие кислород;
  • бескислородные, состоящие только из водорода и неметалла.

Основной список неорганических кислот в соответствии с типом представлен в таблице.

Название

Формула

Кремниевые – метакремниевая и ортокремниевая

Кроме того, в соответствии со свойствами кислоты классифицируются по следующим признакам:

  • растворимость: растворимые (HNO3, HCl) и нерастворимые (H2SiO3);
  • летучесть: летучие (H2S, HCl) и нелетучие (H2SO4, H3PO4);
  • степень диссоциации: сильные (HNO3) и слабые (H2CO3).

Рис. 1. Схема классификации кислот.

Для обозначения минеральных кислот используются традиционные и тривиальные названия. Традиционные названия соответствуют наименованию элемента, который образует кислоту с добавлением морфем -ная, -овая, а также -истая, -новатая, -новатистая для обозначения степени окисления.

Получение

Основные методы получения кислот представлены в таблице.

Метод

Описание

Примеры

Взаимодействие простых веществ

Образование бескислородных кислот

Взаимодействие оксидов с водой

Образование кислородных кислот

Взаимодействие солей с растворами кислот

Получение слабых кислот

Под действием электричества водные растворы солей образуют сильные кислоты

Свойства

Большинство кислот – жидкости с кислым вкусом. Вольфрамовая, хромовая, борная и несколько других кислот находятся в твёрдом состоянии при нормальных условиях. Некоторые кислоты (Н2СО3, H2SO3, HClO) существуют только в виде водного раствора и относятся к слабым кислотам.

Рис. 2. Хромовая кислота.

Кислоты – активные вещества, реагирующие:

  • с металлами:

Все реакции сопровождаются образованием солей.

Возможна качественная реакция с изменением цвета индикатора:

  • лакмус окрашивается в красный;
  • метил оранж – в розовый;
  • фенолфталеин не меняется.

Рис. 3. Цвета индикаторов при взаимодействии кислоты.

Химические свойства минеральных кислот определяются способностью диссоциироваться в воде с образованием катионов водорода и анионов водородных остатков. Кислоты, реагирующие с водой необратимо (диссоциируются полностью) называются сильными. К ним относятся хлорная, азотная, серная и хлороводородная.

Что мы узнали?

Неорганические кислоты образованы водородом и кислотным остатком, которым являются атомы неметалла или оксид. В зависимости от природы кислотного остатка кислоты классифицируются на бескислородные и кислородсодержащие. Все кислоты имеют кислый вкус и способны диссоциироваться в водной среде (распадаться на катионы и анионы). Кислоты получают из простых веществ, оксидов, солей. При взаимодействии с металлами, оксидами, основаниями, солями кислоты образуют соли.

Кислоты — классификация, свойства, получение и применение.

Кислоты (неорганические, минеральные) — это сложные соединения состоящие из катиона водорода (H + ) и аниона кислотного остатка(SO3 2- , SO4 2- , NO3 — и т.д).

Кислотам дали такое название не просто так. Большинство из них имеют кислый вкус. С некоторыми из них знаком каждый из вас. Это, например, уксусная кислота, которая есть в каждом доме, аскорбиновая кислота (она же витамин C), лимонная кислота и т.д. Но не стоит все кислоты пробовать на вкус. Кислоты являются очень едкими веществами. Даже всем нам привычная и известная аскорбиновая кислота в большой концентрации будет вредна нашему организму. А от более сильных кислот — серной, соляной и даже уксусной — можно получить очень сильные ожоги, вплоть до летального исхода. Поэтому при работе с кислотами нужно быть осторожными, а также соблюдать технику безопасности.

Читать еще:  Гадания на спичках. Любит – не любит? Гадание на суженого с помощью воды

Таблица названий некоторых кислот и их солей

Классификация кислот

Понятие «одноосновная кислота» произошло по причине того, что для нейтрализации одной молекулы одноосновной кислоты нам понадобится одна молекула основания. для двухосновной — соответственно две молекулы и т. д.

Свойства кислот

Изменение цвета индикаторов в кислой среде

Химические свойства кислот

  • Взаимодействие с металлами (в ряду активности находящихся до водорода), протекает с выделением газообразного водорода и образованием солей:

H2SO4 + 2Na → Na2SO4 + H2

Металлы, находящиеся в ряду активности после водорода, не вступают в реакцию с кислотой (кроме концентрированной серной кислоты).

Азотная и концентрированная серная кислоты проявляют свойства окислителей, и продукты реакций будут зависеть от концентрации, температуры и природы восстановителя.

  • Взаимодействуют с оксидами основных и амфотерных металлов с образованием солей и воды:

H2SO4 + MgO → MgSO4 + H2O

  • С основаниями, с образованием солей и воды (так называемая реакция нейтрализации):

H2SO4 + 2NaOH → Na2SO4 + H2O

  • Кислоты могут взаимодействовать с солями, если в результате реакции будет образовываться нерастворимая соль, или выделяться газ:

H2SO4 + K2CO3 → K2SO4 + H2O + CO2

  • Сильные кислоты могут вытеснять из солей более слабые кислоты:

3H2SO4 + 2K3PO4 → 3K2SO4 + H3PO4

Получение кислот

  • Взаимодействие кислотного оксида с водой:

H2O + SO3 →H2SO4

  • Взаимодействие водорода и неметалла:

H2 + Cl2 → 2HCl

  • Вытеснение слабой кислоты из солей, более сильной кислотой:

3H2SO4 + 2K3PO4 → 3K2SO4 + H3PO4

Применение кислот

В настоящее время, минеральные и органические кислоты находят множество сфер применения.

Серная кислота (H2SO4), находит широкое применение в химической технологии, для производства лакокрасочных материалов, производстве минеральных удобрений, в пищевой промышленности (пищевая добавка Е513), в качестве электролита в производстве аккумуляторных батарей.

Раствор двухромовокислого калия в серной кислоте (хромовая смесь) используются в лабораториях для мытья химической посуды. Являясь сильным окислителем, хромка позволяет отмывать посуду от следов загрязнений органическими веществами. Так же, хромовая смесь используется в органическом синтезе.

Борная кислота (H3BO3) используется в медицине как антисептик, в качестве флюса при пайке металлов, как борсодержащее удобрение, в домашнем хозяйстве используется как средство от тараканов.

Широко известны в домашнем использовании при выпечке уксусная и лимонная кислоты. Также в быту их используют для удаления накипи.

Знакомая всем с детства аскорбиновая кислота, более известная в народе как витамин С, применяется при лечении простудных заболеваний.

Азотная кислота (HNO3) находит применение при производстве взрывчатых веществ, при производстве минеральных азотсодержащих удобрений (аммиачная, калиевая селитра), в производстве лекарственных средств (нитроглицерин).

Химические кислоты формулы и названия. Формулы и названия основных кислот

Не стоит недооценивать роль кислот в нашей жизни, ведь многие из них просто незаменимы в повседневной жизни. Для начала давайте вспомним, что такое кислоты. Это сложные вещества. Формула записывается следующим образом: HnA, где H – водород, n – количество атомов, А – кислотный остаток.

К основным свойствам кислот относят возможность заменять молекулы атомов водорода на атомы металлов. Большинство из них не только едкие, а и очень ядовитые. Но есть и такие, с которыми мы сталкиваемся постоянно, без вреда для своего здоровья: витамин С, лимонная кислота, молочная кислота. Рассмотрим основные свойства кислот.

Читать еще:  Скачать мой говорящий том тамагочи на андроид. Мой говорящий том для андроид

Физические свойства

Физические свойства кислот, часто помогают найти ключ для установления их характера. Кислоты могут существовать в трех видах: твердом, жидком и газообразном. Например: азотная (HNO3) и серная кислота (H2SO4) — это бесцветные жидкости; борная (H3BO3) и метафосфорная (HPO3) – твердые кислоты. Некоторые из них имеют цвет и запах. Разные кислоты по-разному растворяются в воде. Есть и нерастворимые: H2SiO3 – кремниевая. Жидкие вещества имеют кислый вкус. Название некоторым кислотам дали плоды, в которых они находятся: яблочная кислота, лимонная кислота. Другие же получили свое название от химических элементов, содержащихся в них.

Классификация кислот

Обычно кислоты классифицируют по нескольким признакам. Самый первый — это, по содержанию кислорода в них. А именно: кислородосодержащие (HClO4 – хлорная) и бескислородные (H2S – сероводородная).

По числу атомов водорода (по основности):

  • Одноосновная – содержится один атом водорода (HMnO4);
  • Двухосновная – имеет два атома водорода (H2CO3);
  • Трехосновные, соответственно, имеют три атома водорода (H3BO);
  • Полиосновные – имеют четыре и более атомов, встречаются редко (H4P2O7).

По классам химических соединений, делятся на органические и неорганические кислоты. Первые, в основном, встречаются в продуктах растительного происхождения: уксусная, молочная, никотиновая, аскорбиновая кислоты. К неорганическим кислотам относятся: серная, азотная, борная, мышьяковая. Спектр их применения довольно таки широк от промышленных потребностей (изготовление красителей, электролитов, керамики, удобрений и т.д.) до приготовления пищи или прочистки канализаций. Также кислоты можно классифицировать по силе, летучести, устойчивости и растворимости в воде.

Химические свойства

Рассмотрим основные химические свойства кислот.

  • Первое — это взаимодействие с индикаторами. В качестве индикаторов используются лакмус, метилоранж, фенолфталеин и универсальная индикаторная бумага. В растворах кислот окраска индикатора сменит цвет: лакмус и универсальная инд. бумага станут красными, метилоранж – розовым, фенолфталеин останется бесцветным.
  • Второе – взаимодействие кислот с основаниями. Такую реакцию еще называют нейтрализацией. Кислота вступает в реакцию с основанием, в результате чего мы имеем соль + вода. Например: H2SO4+Ca(OH)2=CaSO4+2 H2O.
  • Так как почти все кислоты хорошо растворяются в воде, нейтрализацию можно проводить как с растворимыми, так и нерастворимыми основаниями. Исключение составляет кремниевая кислота, она почти не растворима в воде. Для ее нейтрализации требуются такие основания, как KOH или NaOH (они растворимы в воде).
  • Третье – взаимодействие кислот с основными оксидами. Здесь так же происходит реакция нейтрализации. Основные оксиды являются близкими «родственниками» оснований, следовательно, реакция та же. Мы очень часто используем эти окислительные свойства кислот. Например, для удаления ржавчины с труб. Кислота реагирует с оксидом, превращаясь в растворимую соль.
  • Четвертое – реакция с металлами. Не все металлы одинаково хорошо вступают в реакцию с кислотами. Их разделяют на активные (K, Ba, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn. Pb) и неактивные (Cu, Hg, Ag, Pt, Au). Так же стоит обращать внимание на силу кислоты (сильные, слабые). Например, соляная и серная кислоты способны вступать в реакцию со всеми неактивными металлами, а лимонная и щавелевая кислоты настолько слабы, что очень медленно реагируют даже с активными металлами.
  • Пятое – реакция кислородосодержащих кислот на нагревание. Почти все кислоты этой группы при нагревании распадаются на кислородный оксид и воду. Исключение составляют угольная (H3PO4) и сернистая кислоты (H2SO4). При нагревании они распадаются на воду и газ. Это надо запомнить. Вот и все основные свойства кислот.
Читать еще:  Влагалищный зуд. Зуд и жжение без выделений у женщин

Кислоты — электролиты, при диссоциации которых из положительных ионов образуются только ионы H + :

HNO 3 ↔ H + + NO 3 — ;

CH 3 COOH↔ H + +CH 3 COO — .

Все кислоты классифицируют на неорганические и органические (карбоновые), которые также имеют свои собственные (внутренние) классификации.

При нормальных условияхзначительное количество неорганических кислот существуют в жидком состоянии, некоторые — в твёрдом состоянии (H 3 PO 4 , H 3 BO 3).

Органические кислоты с числом атомов углерода до 3 представляют собой легкоподвижные бесцветные жидкости с характерным резким запахом; кислоты с 4-9 атомами углерода — маслянистые жидкости с неприятным запахом, а кислоты с большим количеством атомов углерода— твёрдые вещества, нерастворимые в воде.

Химические формулы кислот

Химические формулы кислот рассмотрим на примере нескольких представителей (как неорганических, так и органических): хлороводородной кислоте -HCl, серной кислоте — H 2 SO 4 , фосфорной кислоте — H 3 PO 4 , уксусной кислоте — CH 3 COOH и бензойной кислоте — C 6 H 5 COOH. Химическая формула показывает качественный и количественный состав молекулы (сколько и каких атомов входит в конкретное соединение) По химической формуле можно вычислить молекулярную массу кислот (Ar(H) = 1 а.е.м., Ar(Cl) = 35,5 а.е.м., Ar(P) = 31 а.е.м., Ar(O) = 16 а.е.м., Ar(S) = 32 а.е.м., Ar(C) = 12 а.е.м.):

Mr(HCl) = Ar(H) + Ar(Cl);

Mr(HCl) = 1 + 35,5 = 36,5.

Mr(H 2 SO 4) = 2×Ar(H) + Ar(S) + 4×Ar(O);

Mr(H 2 SO 4) = 2×1 + 32 + 4×16 = 2 + 32 + 64 = 98.

Mr(H 3 PO 4) = 3×Ar(H) + Ar(P) + 4×Ar(O);

Mr(H 3 PO 4) = 3×1 + 31 + 4×16 = 3 + 31 + 64 = 98.

Mr(CH 3 COOH) = 3×Ar(С) + 4×Ar(H) + 2×Ar(O);

Mr(CH 3 COOH) = 3×12 + 4×1 + 2×16 = 36 + 4 + 32 = 72.

Mr(C 6 H 5 COOH) = 7×Ar(C) + 6×Ar(H) + 2×Ar(O);

Mr(C 6 H 5 COOH) = 7×12 + 6×1 + 2×16 = 84 + 6 + 32 = 122.

Структурные (графические) формулы кислот

Структурная (графическая) формула вещества является более наглядной. Она показывает то, как связаны атомы между собой внутри молекулы. Укажем структурные формулы каждого из вышеуказанных соединений:

Рис. 1. Структурная формула хлороводородной кислоты.

Рис. 2. Структурная формула серной кислоты.

Рис. 3. Структурная формула фосфорной кислоты.

Рис. 4. Структурная формула уксусной кислоты.

Рис. 5. Структурная формула бензойной кислоты.

Ионные формулы

Все неорганические кислоты являются электролитами, т.е. способны диссоциировать в водном растворе на ионы:

H 2 SO 4 ↔ 2H + + SO 4 2- ;

H 3 PO 4 ↔ 3H + + PO 4 3- .

Примеры решения задач

C x H y O z + O z →CO 2 + H 2 O.

Определим массы элементов, входящих в состав этого вещества. Значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел: Ar(C) = 12 а.е.м., Ar(H) = 1 а.е.м., Ar(O) = 16 а.е.м.

m(C) = n(C)×M(C) = n(CO 2)×M(C) = ×M(C);

m(H) = n(H)×M(H) = 2×n(H 2 O)×M(H) = ×M(H);

Рассчитаем молярные массы углекислого газа и воды. Как известно, молярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы (M = Mr):

M(CO 2) = Ar(C) + 2×Ar(O) = 12+ 2×16 = 12 + 32 = 44 г/моль;

M(H 2 O) = 2×Ar(H) + Ar(O) = 2×1+ 16 = 2 + 16 = 18 г/моль.

m(H) = 2×3,6 / 18 ×1= 0,4 г.

m(O) = m(C x H y O z) — m(C) — m(H) = 6 — 2,4 — 0,4 = 3,2 г.

Определим химическую формулу соединения:

x:y:z = m(C)/Ar(C) : m(H)/Ar(H) : m(O)/Ar(O);

x:y:z= 0,2: 0,4: 0,2 = 1: 2: 1.

Значит простейшая формула соединения CH 2 Oи молярную массу 30 г/моль .

Чтобы найти истинную формулу органического соединения найдем отношение истинной и полученной молярных масс:

M substance / M(CH 2 O) = 180 / 30 = 6.

Значит индексы атомов углерода, водорода и кислорода должны быть в 6 раз выше, т.е. формула вещества будет иметь вид C 6 H 12 O 6 . Это глюкоза или фруктоза.

Источники:

http://obrazovaka.ru/himiya/neorganicheskie-kisloty-spisok-osnovnye-formuly.html

http://in-chemistry.ru/kisloty-klassifikatsiya-svojstva-poluchenie-primenenie

http://page-electric.ru/appliances/himicheskie-kisloty-formuly-i-nazvaniya-formuly-i-nazvaniya/

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector