Что такое степень с натуральным показателем (В.А. Тарасов)

Свойства степени

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

a m · a n = a m + n , где « a » — любое число, а « m », « n » — любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15

Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

Нельзя заменять сумму (3 3 + 3 2 ) на 3 5 . Это понятно, если
посчитать (3 3 + 3 2 ) = (27 + 9) = 36 , а 3 5 = 243

Свойство № 2
Частное степеней

При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

  • Записать частное в виде степени
    (2b) 5 : (2b) 3 = (2b) 5 − 3 = (2b) 2
  • Вычислить.

= 11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
Пример. Решить уравнение. Используем свойство частного степеней.
3 8 : t = 3 4

Ответ: t = 3 4 = 81

Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

    Пример. Упростить выражение.
    4 5m + 6 · 4 m + 2 : 4 4m + 3 = 4 5m + 6 + m + 2 : 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5

Пример. Найти значение выражения, используя свойства степени.

= 2 11 − 5 = 2 6 = 64

Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

Нельзя заменять разность (4 3 −4 2 ) на 4 1 . Это понятно, если посчитать (4 3 −4 2 ) = (64 − 16) = 48 , а 4 1 = 4

Свойство № 3
Возведение степени в степень

При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

(a n ) m = a n · m , где « a » — любое число, а « m », « n » — любые натуральные числа.

  • Пример.
    (a 4 ) 6 = a 4 · 6 = a 24
  • Пример. Представить 3 20 в виде степени с основанием 3 2 .

По свойству возведения степени в степень известно, что при возведении в степень показатели перемножаются, значит:

Свойства 4
Степень произведения

При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

(a · b) n = a n · b n , где « a », « b » — любые рациональные числа; « n » — любое натуральное число.

  • Пример 1.
    (6 · a 2 · b 3 · c ) 2 = 6 2 · a 2 · 2 · b 3 · 2 · с 1 · 2 = 36 a 4 · b 6 · с 2
  • Пример 2.
    (−x 2 · y) 6 = ( (−1) 6 · x 2 · 6 · y 1 · 6 ) = x 12 · y 6

Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

(a n · b n )= (a · b) n

То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

  • Пример. Вычислить.
    2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
  • Пример. Вычислить.
    0,5 16 · 2 16 = (0,5 · 2) 16 = 1

В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

Пример возведения в степень десятичной дроби.

4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

Свойства 5
Степень частного (дроби)

Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

(a : b) n = a n : b n , где « a », « b » — любые рациональные числа, b ≠ 0, n — любое натуральное число.

  • Пример. Представить выражение в виде частного степеней.
    (5 : 3) 12 = 5 12 : 3 12

Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

Степень с натуральным показателем и её свойства

Степень с натуральным показателем и ее свойства.

Степенью числа a с натуральным показателем n, большим 1, называется произведение n множителей, каждый из которых равен a:

a n =

В выражении a n :

— число а (повторяющийся множитель) называют основанием степени

— число n (показывающее сколько раз повторяется множитель) – показателем степени

Например: 2 5 = 2·2·2·2·2 = 32, здесь: 2 – основание степени, 5 – показатель степени, 32 – значение степени

Отметим, что основание степени может быть любым числом.

Вычисление значения степени называют действием возведения в степень. Это действие третьей ступени. То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание).

Для записи больших чисел часто применяются степени числа 10. Так, расстояние от земли до солнца примерно равное 150 млн. км, записывают в виде 1,5 · 10 8

Каждое число большее 10 можно записать в виде: а · 10 n , где 1 3 ;

103000 = 1,03 · 10 5 .

Свойства степени с натуральным показателем:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней складываются

например: 7 1.7 · 7 — 0.9 = 7 1.7+( — 0.9) = 7 1.7 — 0.9 = 7 0.8

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней вычитаются

например: 13 3.8 / 13 -0.2 = 13 (3.8 -0.2) = 13 3.6

3. При возведении степени в степень основание остается прежним, а показатели степеней перемножаются.

например: (2 3 ) 2 = 2 3·2 = 2 6

4. При возведении в степень произведения в эту степень возводится каждый множитель

(a · b) n = a n · b m ,

5 . При возведении в степень дроби в эту степень возводятся числитель и знаменатель

Что такое степень с натуральным показателем (В.А. Тарасов)

Видеоурок 2: Степень с натуральным показателем и ее свойства

Степень с натуральным показателем

Под степенью некоторого числа «а» с некоторым показателем «n» понимают произведение числа «а» само на себя «n» раз.

Когда говорят о степени с натуральным показателем, это означает, что число «n» должно быть целым и не отрицательным.

а — основание степени, которое показывает, какое число следует умножать само на себя,

n — показатель степени — он говорит, сколько раз основание нужно умножить само на себя.

8 4 = 8 * 8 * 8 * 8 = 4096.

В данном случае под основанием степени понимают число «8», показателем степени считается число «4», под значением степени понимается число «4096».

Самой большой и распространенной ошибкой при подсчете степени является умножение показателя на основание — ЭТО НЕ ВЕРНО!

Когда речь идет о степени с натуральным показателем, имеется в виду, что только показатель степени (n) должен быть натуральным числом.

В качестве основания можно брать любые числа с числовой прямой.

Математическое действие, которое совершается над основанием и показателем степени, называется возведение в степень.

Сложение вычитание — математические действия первой ступени, умножение деление — действие второй ступени, возведение степени — это математическое действие третьей ступени, то есть одной из высших.

Данная иерархия математических действий определяет порядок при расчете. Если данное действие встречается в задачах среди двух предыдущих, то оно делается в первую очередь.

В данном примере необходимо сначала возвести 2 в степень, то есть

затем полученный результат умножить на 6, то есть

Степень с натуральным показателем используется не только для конкретных вычислений, но и для удобства записи больших чисел. В данном случае еще используется понятие «стандартный вид числа» . Данная запись подразумевает умножение некоторого числа от 1 до 9 на основание степени равное 10 с некоторым показателем степени.

Например , для записи радиуса Земли в стандартном виде используют следующую запись:

6400000 м = 6,4 * 10 6 м,

а масса Земли, например, записывается следующим образом:

Для удобства решений примеров со степенями необходимо знать основные их свойства:

1. Если Вам необходимо умножить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.

2. Если необходимо разделить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть. Обратите внимани, для действий со степенями с натуральным показателем показатель степени делимого должен быть больше показателя степени делителя. В противном случае, частным данного действия будет число с отрицательным показателем степени.

3. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.

4. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.

(a * b) m = a m * b m

(5 * 8) 2 = 5 2 * 8 2 .

5. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.

6. Любое число, которое возводится в показатель степени, равный единице, равно первоначальному числу.

7. При возведении любого числа в степень с показателем ноль, результатом данного вычисления всегда будет единица.

I. Произведение n сомножителей, каждый из которых равен а называется n -й степенью числа а и обозначается а n .

Примеры. Записать произведение в виде степени.

1) mmmm; 2) aaabb; 3) 5·5·5·5·ccc; 4) ppkk+pppk-ppkkk.

1) mmmm=m 4 , так как, по определению степени, произведение четырех сомножителей, каждый из которых равен m , будет четвертой степенью числа m .

2) aaabb=a 3 b 2 ; 3) 5·5·5·5·ccc=5 4 c 3 ; 4) ppkk+pppk-ppkkk=p 2 k 2 +p 3 k-p 2 k 3 .

II. Действие, посредством которого находится произведение нескольких равных сомножителей, называется возведением в степень. Число, которое возводится в степень, называется основанием степени. Число, которое показывает, в какую степень возводится основание, называется показателем степени. Так, а n – степень, а – основание степени, n – показатель степени. Например:

2 3 — это степень. Число 2 — основание степени, показатель степени равен 3 . Значение степени 2 3 равно 8, так как 2 3 =2·2·2=8.

Примеры. Написать следующие выражения без показателя степени.

5) 4 3 ; 6) a 3 b 2 c 3 ; 7) a 3 -b 3 ; 8) 2a 4 +3b 2 .

5) 4 3 = 4·4·4; 6) a 3 b 2 c 3 = aaabbccc; 7) a 3 -b 3 = aaa-bbb; 8) 2a 4 +3b 2 = 2aaaa+3bb.

III. а 0 =1 Любое число (кроме нуля) в нулевой степени равно единице. Например, 25 0 =1.
IV. а 1 =а Любое число в первой степени равно самому себе.

V. a m a n = a m + n При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают.

9) a·a 3 ·a 7 ; 10) b 0 +b 2 ·b 3 ; 11) c 2 ·c 0 ·c·c 4 .

9) a·a 3 ·a 7 =a 1+3+7 =a 11 ; 10) b 0 +b 2 ·b 3 = 1+b 2+3 =1+b 5 ;

11) c 2 ·c 0 ·c·c 4 = 1·c 2 ·c·c 4 =c 2+1+4 =c 7 .

VI. a m : a n = a m n При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.

12) a 8:a 3 ; 13) m 11:m 4 ; 14) 5 6:5 4 .

12) a 8:a 3 =a 8-3 =a 5 ; 13) m 11:m 4 =m 11-4 =m 7 ; 14) 5 6:5 4 =5 2 =5·5=25.

VII. (a m ) n = a mn При возведении степени в степень основание оставляют прежним, а показатели перемножают.

15) (a 3) 4 =a 3·4 =a 12 ; 16) (c 5) 2 =c 5·2 =c 10 .

Обратите внимание , что, так как от перестановки множителей произведение не меняется, то :

15) (a 3) 4 =(a 4) 3 ; 16) (c 5) 2 =(c 2) 5 .

V I II . (a∙b) n =a n ∙b n При возведении произведения в степень возводят в эту степень каждый из множителей.

17) (2a 2) 5 ; 18) 0,2 6 ·5 6 ; 19) 0,25 2 ·40 2 .

17) (2a 2) 5 =2 5 ·a 2·5 =32a 10 ; 18) 0,2 6 ·5 6 =(0,2·5) 6 =1 6 =1;

19) 0,25 2 ·40 2 =(0,25·40) 2 =10 2 =100.


IX. При возведении в степень дроби возводят в эту степень и числитель и знаменатель дроби.

Страница 1 из 1 1

>>Математика: Что такое степень с натуральным показателем

Что такое степень с натуральным показателем

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Нижеприведенная формула будет являться определением степени с натуральным показателем (a — основание степени и повторяющийся множитель, а n — показатель степени, который показывает сколько раз повторяется множитель):

Данное выражение означает, что степень числа a с натуральным показателем n является произведением n сомножителей, при том, что каждый из множителей равняется a .

17^5=17 cdot 17 cdot 17 cdot 17 cdot 17=1,419,857

17 — основание степени,

5 — показатель степени,

1419857 — значение степени.

Степень с нулевым показателем равна 1 , при условии, что a neq 0 :

Когда нужно записать большое число обычно используют степень числа 10 .

Например, один из самых древних динозавров на Земле жил около 280 млн. лет назад. Его возраст записывается следующим образом: 2,8 cdot 10^8 .

Каждое число большее 10 можно записать в виде a cdot 10^n , при условии, что 1 k .

Показатели степени вычитаются, а основание остается прежним.

Данное ограничение n > k вводится для того, чтобы не выходить за рамки натуральных показателей степени. Действительно, при n > k показатель степени a^ будет являться натуральным числом, иначе он будет либо отрицательным числом (k

Источники:

http://math-prosto.ru/?page=pages/stepeni/stepeni2.php

http://mirurokov.ru/%D0%BE%D1%82%D0%BA%D1%80%D1%8B%D1%82%D1%8B%D0%B9-%D1%83%D1%80%D0%BE%D0%BA/%D0%B2%D0%BE%D0%B7%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B2-%D1%81%D1%82%D0%B5%D0%BF%D0%B5%D0%BD%D1%8C/%D1%81%D1%82%D0%B5%D0%BF%D0%B5%D0%BD%D1%8C-%D1%81-%D0%BD%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%BC-%D0%BF%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D0%B5%D0%BC-%D0%B8-%D0%B5%D1%91-%D1%81%D0%B2%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%B0.html

http://azowo.ru/shema-elektroprovodki/chto-takoe-stepen-s-naturalnym-pokazatelem-v-a-tarasov-chto-takoe/

Читать еще:  К чему снится есть спелую клубнику. Что значит клубника во сне
Ссылка на основную публикацию
Статьи на тему:

Adblock
detector