Свойства уравнений Максвелла:1. Уравнения Максвелла линейны

Свойства уравнений Максвелла;

Материальные уравнения.

Уравнения Максвелла ещё не составляют полной системы уравнений электромагнитного поля. Этих уравнений недостаточно для нахождения полей по заданным распределениям зарядов и токов. Для этого необходимо дополнить соотношения, в которые входили бы величины, характеризующие индивидуальные свойства среды. Для случая изотропных сред (не содержащих сегнетоэлектриков и ферромагнетиков) они имеют следующий вид:

С учётом соотношений (11) система уравнений является полной и позволяет описывать все электромагнитные процессы в вакууме и веществе.

А. Уравнения Максвелла линейны. Они содержат только первые производные полей и по времени и пространственным координатам, а так же первые степени плотности электрических зарядов ρ и токов γ. Свойство линейности уравнений непосредственно связано с принципом суперпозиции.

Б. Уравнения Максвелла содержат уравнение непрерывности, выражающее закон сохранения электрического заряда:

В. Уравнения Максвелла выполняются во всех инерциальных системах отсчёта. Они являются релятивистски-инвариантными, что подтверждается опытными данными.

Г. О симметрииуравнений Максвелла.

Уравнения не симметричны относительно электрического и магнитного полей. Это обусловлено тем, что в природе существуют электрические заряды, но нет магнитных зарядов. Вместе с тем в нейтральной однородной среде, где ρ = 0 и ,уравнения Максвелла приобретают симметричный вид, т.е. так связано с , как с .

Д. Об электромагнитных волнах.

Из уравнений Максвелла следует важный вывод о существовании принципиально нового физического явления: электромагнитное поле способно существовать самостоятельно без электрических зарядов и токов. При этом изменение его состояния обязательно имеет волновой характер. Всякое изменение во времени магнитного поля возбуждает поле электрическое, изменение электрического поля, в свою очередь, возбуждает магнитное поле. За счёт непрерывного взаимопревращения они и должны сохранятся. Поля такого рода называютсяэлектромагнитными волнами. Выяснилось также, что ток смещения играет в этом явлении первостепенную роль.

Свойства уравнений Максвелла

1.Уравнения Максвелла линейны. Они содержат только первые производные полей Е и В по времени и координатам и первые степени плотности электрических зарядов и токов. Это свойство связано с принципом суперпозиции: если два каких-нибудь поля удовлетворяют уравнениям Максвелла, то это относится и сумме этих полей.

2. Уравнения Максвелла содержат уравнение непрерывности, выражающее закон сохранения электрического заряда.

3). Уравнения Максвелла выполняются во всех инерциальных системах отсчета.

4). Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет магнитных зарядов. В случае когда заряды и токи распределены в пространстве непрерывно, обе формы уравнений Максвелла эквивалентны. Однако если имеются поверхности разрыва – поверхности , на которых свойства среды или полей меняются скачкообразно, то интегральная форма уравнений является более общей.

( ), где V —

объем диэлектрика, — дипольный момент одной молекулы.

Теорема Гаусса для вектора поляризации

— поток вектора поляризации сквозь произвольную замкнутую поверхность S равен взятому с обратным знаком избыточному связанному заряду диэлектрика в объеме, охватываемом поверхностью s.

Читать еще:  Если снится машина синего цвета. Сонник голубой автомобиль

Электрическое поле в диэлектрической среде создается как свободными, так и связанными зарядами, так что вектор напряженности E, характеризующий результирующее поле в диэлектрике,

.

Если обозначить объемную плотность свободных зарядов , а связанных зарядов , то присутствие связанных зарядов отразится в теореме Гаусса следующим образом:

,

в дифференциальной форме, либо в интегральной форме

.

С учетом выражения (2.1)

,

откуда для вектора электрического смещения (индукции) находим

.

Последнее выражение показывает, что вектор электрической индукции учитывает поляризованность среды. Возвращаясь к соответствующим формулировкам теоремы Гаусса

; ,

можно видеть, что вектор электрического смещения характеризует источники электрического поля, т. е. свободные заряды, на которых этот вектор начинается и заканчивается. Так как , то .

Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме к модулю напряженности полного поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества

Вопрос 35

Неоднородный участок цепи

–такой участок, где на свободные

электрические заряды одновременно действуют как силы электрического

поля, так и сторонние силы.

Сторонние силы –силы, разделяющие заряды в проводниках.

По закону Ома для неоднородного участка цепи, сила тока прямо

пропорциональна напряжению на этом участке и обратно пропорциональна

его полному сопротивлению:

где R — общее сопротивление неоднородного участка. — разность потенциалов точек в начале и конце рассматриваемого участка, U-напряжение на данном участке

Разность потенциалов φ1 –φ2 характеризует работу силы электрического поля по переносу единичного положительного заряда из точки1 в точку 2.

ЭДС характеризует работу сторонних сил по переносу единичного

положительного заряда из точки 1 в точку 2.

Вопрос 36

Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого совершалась работа.
Формула:

1 Джоуль = 1 Вольт * 1 Ампер * 1 секунда

Мощность электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока.
Формула:

1 Ватт = 1 Вольт * 1 Ампер

Русский ученый Ленц и английский физик Джоуль одновременно и независимо один от другого установили, что:
при прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику.
Это положение называется законом Ленца — Джоуля.
Если обозначить количество теплоты, создаваемое током, буквойQ (Дж), ток, протекающий по проводнику — I, сопротивление проводника —Rи время, в течение которого ток протекал по проводнику —t, то закону Ленца — Джоуля можно придать следующее выражение:
Q = I 2 Rt
.

Вопрос 37

Два закона Кирхгофа служат для расчёта сложных электрических цепей и полностью определяют их электрическое состояние. Возьмём такую электрическую цепь:

Для сложных цепей применяют понятие ветви, узла и контура.

Ветвь – это участок цепи, по которому проходит один и тот же ток и, который состоит из последовательно соединённых элементов – резисторов, источников электроэнергии и т.п.

Узел – это место соединения трёх и более ветвей

Контур цепи – это любой замкнутый путь, который можно обойти, перемещаясь по нескольким её ветвям.

Читать еще:  Заговор от надоедливого гостя. Заговоры, чтобы отвадить нежеланного человека

Первый закон Кирхгофа относится к узлам электрической цепи. Согласно этому закону: алгебраическая сумма токов в любом узле равна нулю.

∑ I = 0

Второй закон Кирхгофа характеризует равновесие в замкнутых контурах электрической цепи. Согласно этому закону в любом замкнутом электрическом контуре алгебраическая сумма ЭДС равна алгебраической сумме напряжений на резисторах, входящих в этот контур, иными словами, в любом замкнутом электрическом контуре сумма всех падений напряжений равна сумме всех ЭДС в нём.

∑ Е = ∑ I·R

В этом выражении положительными следует считать ЭДС и токи, направления, которых совпадают с произвольно выбранными направлениями обхода рассматриваемого контура.

studopedia.org — Студопедия.Орг — 2014-2020 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с) .

Уравнения Максвелла

Значение уравнений Максвелла

Уравнения Дж. Максвелла создают основу для предложенной им теории электромагнитных явлений, которая объяснила все известные в то время эмпирические факты, некоторые эффекты предсказала. Главным выводом теории Максвелла стало положение о существовании электромагнитных волн, которые распространяются со скоростью света.

Уравнения, предложенные Максвеллом, в электромагнетизме играют роль подобную роли законов Ньютона в классической механике. Они явились обобщением экспериментальных законов и продолжением идей ученых (Кулона, Ампера, Фарадея и др.) изучавших электромагнетизм до Максвелла.

Сам Максвелл предложил двадцать уравнений в дифференциальной форме с двадцатью неизвестными величинами. В современном виде мы имеем систему уравнений Максвелла благодаря немецкому физику Г. Герцу и англичанину О. Хэвисайду. С помощью этих уравнений можно описать все электромагнитные явления.

Система уравнений Максвелла

Систему уравнений Максвелла составляют:

Попробуй обратиться за помощью к преподавателям

Выражения (1)-(4) называют полевыми уравнениями, они применимы для описания всех макроскопических электромагнитных явлений. Иногда уравнения системы Максвелла группируют в пары, первую пару составляют из второго и третьего уравнения, вторую пару — из первого и четвертого уравнений. При этом говорят, что в первую пару уравнений входят только основные характеристики поля ($overrightarrow и overrightarrow$), а во вторую пару — вспомогательные ($overrightarrow и overrightarrow$).

Каждое из векторных уравнений (1) и (2) эквивалентно трем скалярным уравнениям. Эти уравнения связывают компоненты векторов, которые находятся в левой и правой частях выражений. Так, в скалярном виде уравнение (1) представляется как:

В скалярном виде уравнение (2) запишем как:

Третье уравнение из системы Максвелла в скалярном виде:

Четвертое уравнение в скалярной форме примет следующий вид:

Для того чтобы рассмотреть конкретную ситуацию, систему уравнений (1)-(4) дополняют следующими материальными уравнениями, которые учитывают электромагнитные свойства среды:

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Необходимо отметить, что существует целый ряд явлений, в которых материальные уравнения существенно отличны от уравнений (5), например, если речь идет о нелинейных явлениях. В таких случаях получение материальных уравнений составляет отдельную научную задачу.

Физический смысл уравнений Максвелла

Уравнение (1) системы указывает на то, что двумя возможными источниками магнитного поля являются токи проводимости ($overrightarrow$) и токи смещения ($frac>$).

Уравнение (2) является законом электромагнитной индукции и отображает тот факт, что переменное магнитное поле — один из источников возникновения электрического поля.

Читать еще:  Алексей и мария совместимость имен. Мария совместимость

Следующим источником электрического поля служат электрические заряды, что и отображает уравнение (4), которое является, по сути, законом Кулона.

Уравнение (3) означает, что линии магнитной индукции не имеют источников (они либо замкнуты, либо уходят в бесконечность), что приводит к выводу об отсутствии магнитных зарядов, которые создают магнитное поле.

Материальные уравнения (5) — это соотношения между векторами поля и токами. Диэлектрические свойства среды заключены в диэлектрической проницаемости ($varepsilon $). Магнитные свойства, которые описывает намагниченность, учтены в магнитной проницаемости ($mu $). Проводящие свойства среды сосредоточены в удельной проводимости ($sigma $).

Уравнения поля линейны и учитывают принцип суперпозиции.

Границы применимости уравнений Максвелла

Система уравнений Максвелла ограничена следующими условиями:

Материальные тела должны быть неподвижны в поле.

Постоянные $varepsilon , mu ,sigma $ могут зависеть от координат, но не должны зависеть от времени и векторов поля.

В поле не должно находиться постоянных магнитов и ферромагнитных тел.

Если существует необходимость учета движения среды, то уравнения системы Максвелла оставляют неизменными, а движение учитывается в материальных уравнениях, которые становятся зависимыми от скорости среды и существенно усложняются. Кроме прочего материальные уравнения перестают быть соотношениями между парами величин, как в (5). Например, плотность тока проводимости становится зависимой от индукции магнитного поля, а не только от напряженности электрического поля.

Магнитное поле постоянных магнитов, например, можно описать, используя систему Максвелла, если известна намагниченность. Но, если заданы токи, то в присутствии ферромагнетиков описать поле при помощи данных уравнений не получится.

Задание: Докажите, что из уравнений Максвелла следует закон сохранения заряда.

Решение:

В качестве основания для решения задачи используем из системы Максвелла уравнение:

Проведем операцию дивергирования в обеих частях выражения (1.1):

Для выражения (1.2) в соответствии с теоремой равенстве нулю дивергенции ротора имеем:

Рассмотрим второе слагаемое в правой части. Мы можем поменять порядок дифференцирования, так как время и пространственные координаты независимы, то есть записать:

В соответствии с системой Максвелла мы знаем, что источниками электрических полей служат заряды или:

Что позволяет нам записать уравнение (1.4) в виде:

Что дает нам закон сохранения заряда, который записан в виде:

Данное уравнение называют уравнением непрерывности тока, оно содержит в себе закон сохранения заряда, что совершенно очевидно, если выражение (1.8), записать в интегральной форме:

тогда если области замкнуты и изолированы получаем:

Что требовалось доказать.

Задание: Покажите, что уравнения $rotoverrightarrow=-frac>$ и $divoverrightarrow=0$ , входящие в систему Максвелла не противоречат друг другу.

Решение:

За основу решения примем уравнение:

Возьмём дивергенцию от обеих частей уравнения:

В соответствии с теоремой равенстве нулю дивергенции ротора имеем:

Соответственно, получаем, что

Выражение $divoverrightarrow=const$ не противоречит тому, что $divoverrightarrow=0$.

Мы получили, что уравнения $rotoverrightarrow=-frac>$ и $divoverrightarrow=0$ совместны, что требовалось показать.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Источники:

http://studopedia.su/13_164210_svoystva-uravneniy-maksvella.html

http://studopedia.org/14-31461.html

http://spravochnick.ru/fizika/uravneniya_maksvella/

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector
×
×
×
×