Критерий согласия Пирсона χ2 (Хи-квадрат). Использование критериев согласия

Критерий согласия Пирсона

Критерий согласия Пирсона (χ 2 ) применяют для проверки гипотезы о соответствии эмпирического распределения предполагаемому теоретическому распределению F(x) при большом объеме выборки (n ≥ 100). Критерий применим для любых видов функции F(x), даже при неизвестных значениях их параметров, что обычно имеет место при анализе результатов механических испытаний. В этом заключается его универсальность.

Использование критерия χ 2 предусматривает разбиение размаха варьирования выборки на интервалы и определения числа наблюдений (частоты) nj для каждого из e интервалов. Для удобства оценок параметров распределения интервалы выбирают одинаковой длины.

Число интервалов зависит от объема выборки. Обычно принимают: при n = 100 e = 10 ÷ 15, при n = 200 e = 15 ÷ 20, при n = 400 e = 25 ÷ 30, при n = 1000 e = 35 ÷ 40.

Интервалы, содержащие менее пяти наблюдений, объединяют с соседними. Однако, если число таких интервалов составляет менее 20 % от их общего количества, допускаются интервалы с частотой nj ≥ 2.

Статистикой критерия Пирсона служит величина
, (3.91)
где pj — вероятность попадания изучаемой случайной величины в j-и интервал, вычисляемая в соответствии с гипотетическим законом распределением F(x). При вычислении вероятности pj нужно иметь в виду, что левая граница первого интервала и правая последнего должны совпадать с границами области возможных значений случайной величины. Например, при нормальном распределении первый интервал простирается до -∞, а последний — до +∞.

Нулевую гипотезу о соответствии выборочного распределения теоретическому закону F(x) проверяют путем сравнения вычисленной по формуле (3.91) величины с критическим значением χ 2 α, найденным по табл. VI приложения для уровня значимости α и числа степеней свободы k = e1 — m — 1. Здесь e1 — число интервалов после объединения; m — число параметров, оцениваемых по рассматриваемой выборке. Если выполняется неравенство
χ 2 ≤ χ 2 α (3.92)
то нулевую гипотезу не отвергают. При несоблюдении указанного неравенства принимают альтернативную гипотезу о принадлежности выборки неизвестному распределению.

Недостатком критерия согласия Пирсона является потеря части первоначальной информации, связанная с необходимостью группировки результатов наблюдений в интервалы и объединения отдельных интервалов с малым числом наблюдений. В связи с этим рекомендуется дополнять проверку соответствия распределений по критерию χ 2 другими критериями. Особенно это необходимо при сравнительно малом объеме выборки (n ≈ 100).

Пример 3.18. Проверить с помощью критерия согласия χ 2 гипотезу о нормальном распределении логарифма числа циклов до разрушения при усталостных испытаниях по данным табл. 2.3 и 2.4. Принять уровень значимости α = 0.05.

Все результаты вычислений приведены в табл. 3.18, данные первых трех граф которой заимствованы из табл. 2.4. В связи с малым числом наблюдений объединяем интервалы 1-й со 2-м и 9-й с 10-м и 11-м.

В 4-й графе приводим границы интервалов, выраженные через нормированную случайную величину

где xср и s — соответственно выборочное среднее значение и среднее квадратическое отклонение логарифма числа циклов до разрушения образцов. Значения этих оценок были найдены в примере 2.2, xср = lg(N) = 6.515 и s = 0.315. С помощью табл. I приложения с учетом (1.29) находим значения функции Лапласа (1.27) для границ интервалов и заносим их в 5-ю графу. Оценка вероятности попадания значений механической характеристики в интервалы (6-я графа) представляет собой разность значений функции Лапласа на правой и левой границе интервала. Если интервалы объединяются, вычисляют разность значений функции на границах объединенного интервала. Сумма чисел pj, в графе 6 всегда будет равна единице. В 7-ю графу заносят оценки математических ожиданий числа наблюдений по интервалам, которые определяем умножением оценки вероятности pj на общее число образцов в выборке n =100. Итог 7-й графы должен равняться итогу 3-й графы.

Читать еще:  Что означает имя иман в исламе. Мифы о творении разрушают веру

Проверка гипотезы о нормальности распределения логарифма числа циклов до разрушения

КРИТЕРИЙ ХИ-КВАДРАТ ПИРСОНА

​ Критерий χ 2 Пирсона – это непараметрический метод, который позволяет оценить значимость различий между фактическим (выявленным в результате исследования) количеством исходов или качественных характеристик выборки, попадающих в каждую категорию, и теоретическим количеством, которое можно ожидать в изучаемых группах при справедливости нулевой гипотезы. Выражаясь проще, метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей (частот, долей).

1. История разработки критерия χ 2

Критерий хи-квадрат для анализа таблиц сопряженности был разработан и предложен в 1900 году английским математиком, статистиком, биологом и философом, основателем математической статистики и одним из основоположников биометрики Карлом Пирсоном (1857-1936).

2. Для чего используется критерий χ 2 Пирсона?

Критерий хи-квадрат может применяться при анализе таблиц сопряженности, содержащих сведения о частоте исходов в зависимости от наличия фактора риска. Например, четырехпольная таблица сопряженности выглядит следующим образом:

Как заполнить такую таблицу сопряженности? Рассмотрим небольшой пример.

Проводится исследование влияния курения на риск развития артериальной гипертонии. Для этого были отобраны две группы исследуемых — в первую вошли 70 человек, ежедневно выкуривающих не менее 1 пачки сигарет, во вторую — 80 некурящих такого же возраста. В первой группе у 40 человек отмечалось повышенное артериальное давление. Во второй — артериальная гипертония наблюдалась у 32 человек. Соответственно, нормальное артериальное давление в группе курильщиков было у 30 человек (70 — 40 = 30) а в группе некурящих — у 48 (80 — 32 = 48).

Заполняем исходными данными четырехпольную таблицу сопряженности:

В полученной таблице сопряженности каждая строчка соответствует определенной группе исследуемых. Столбцы — показывают число лиц с артериальной гипертонией или с нормальным артериальным давлением.

Задача, которая ставится перед исследователем: имеются ли статистически значимые различия между частотой лиц с артериальным давлением среди курящих и некурящих? Ответить на этот вопрос можно, рассчитав критерий хи-квадрат Пирсона и сравнив получившееся значение с критическим.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в номинальной шкале (например, пол пациента — мужской или женский) или в порядковой (например, степень артериальной гипертензии, принимающая значения от 0 до 3).
  2. Данный метод позволяет проводить анализ не только четырехпольных таблиц, когда и фактор, и исход являются бинарными переменными, то есть имеют только два возможных значения (например, мужской или женский пол, наличие или отсутствие определенного заболевания в анамнезе. ). Критерий хи-квадрат Пирсона может применяться и в случае анализа многопольных таблиц, когда фактор и (или) исход принимают три и более значений.
  3. Сопоставляемые группы должны быть независимыми, то есть критерий хи-квадрат не должен применяться при сравнении наблюдений «до-«после». В этих случаях проводится тест Мак-Немара (при сравнении двух связанных совокупностей) или рассчитывается Q-критерий Кохрена (в случае сравнения трех и более групп).
  4. При анализе четырехпольных таблиц ожидаемые значения в каждой из ячеек должны быть не менее 10. В том случае, если хотя бы в одной ячейке ожидаемое явление принимает значение от 5 до 9, критерий хи-квадрат должен рассчитываться с поправкой Йейтса. Если хотя бы в одной ячейке ожидаемое явление меньше 5, то для анализа должен использоваться точный критерий Фишера.
  5. В случае анализа многопольных таблиц ожидаемое число наблюдений не должно принимать значения менее 5 более чем в 20% ячеек.
Читать еще:  К чему снится храм. К чему снится церковь

4. Как рассчитать критерий хи-квадрат Пирсона?

Для расчета критерия хи-квадрат необходимо:

    Рассчитываем ожидаемое количество наблюдений для каждой из ячеек таблицы сопряженности (при условии справедливости нулевой гипотезы об отсутствии взаимосвязи) путем перемножения сумм рядов и столбцов с последующим делением полученного произведения на общее число наблюдений. Общий вид таблицы ожидаемых значений представлен ниже:

КРИТЕРИЙ СОГЛАСИЯ ПИРСОНА

Критерий согласия для проверки гипотезы о законе распределения исследуемой случайной величины.Во многих практических задачах точный закон распределения неизвестен.Поэтому выдвигается гипотеза о соответствии имеющегося эмпирического закона, построенного по наблюдениям, некоторому теоретическому.Данная гипотеза требует статистической проверки, по результатам которой будет либо подтверждена, либо опровергнута.

Пусть X – исследуемая случайная величина. Требуется проверить гипотезу H о том, что данная случайная величина подчиняется закону распределения F(x). Для этого необходимо произвести выборку из n независимых наблюдений и по ней построить эмпирический закон распределения F'(x). Для сравнения эмпирического и гипотетического законов используется правило, называемое критерием согласия.Одним из популярных является критерий согласия хи-квадрат К. Пирсона.

В нем вычисляется статистика хи-квадрат:

,

где N – число интервалов, по которому строился эмпирический закон распределения (число столбцов соответствующей гистограммы), i – номер интервала, p t i — вероятность попадания значения случайной величины в i-й интервал для теоретического закона распределения, p e i – вероятность попадания значения случайной величины в i-й интервал для эмпирического закона распределения. Она и должна подчиняться распределению хи-квадрат.

Если вычисленное значение статистики превосходит квантиль распределения хи-квадрат с k-p-1 степенями свободы для заданного уровня значимости, то гипотеза H отвергается.В противном случае она принимается на заданном уровне значимости.Здесь k – число наблюдений, p – число оцениваемых параметров закона распределения.


Пирсона позволяет осуществлять проверку эмпирического и теоретического (либо другого эмпирического) распределений одного признака. Данный критерий применяется, в основном, в двух случаях:

— Для сопоставления эмпирического распределения признака с теоретическим распределением (нормальным, показательным, равномерным либо каким-то иным законом);

— Для сопоставления двух эмпирических распределений одного и того же признака.

Идея метода – определение степени расхождения соответствующих частот ni и ; чем больше это расхождение, тем больше значение

Объемы выборок должны быть не меньше 50 и необходимо равенство сумм частот

Приведем схему применения критерия для сопоставления двух эмпирических распределений:

Критерий — статистический критерий для проверки гипотезы , что наблюдаемая случайная величина подчиняется некому теоретическому закону распределения.

В зависимости от значения критерия , гипотеза может приниматься, либо отвергаться:

§ , гипотеза выполняется.

§ (попадает в левый «хвост» распределения). Следовательно, теоретические и практические значения очень близки. Если, к примеру, происходит проверка генератора случайных чисел, который сгенерировал n чисел из отрезка [0,1] и гипотеза : выборка распределена равномерно на [0,1], тогда генератор нельзя называть случайным (гипотеза случайности не выполняется), т.к. выборка распределена слишком равномерно, но гипотеза выполняется.

§ (попадает в правый «хвост» распределения) гипотеза отвергается.

Определение: пусть дана случайная величина X .

Читать еще:  Что значит родинка на левой щеке. Значение родинок у мужчин

Гипотеза : с. в. X подчиняется закону распределения .

Для проверки гипотезы рассмотрим выборку, состоящую из n независимых наблюдений над с.в. X: . По выборке построим эмпирическое распределение с.в X. Сравнение эмпирического и теоретического распределения (предполагаемого в гипотезе) производится с помощью специально подобранной функции —критерия согласия. Рассмотрим критерий согласия Пирсона (критерий ):

Гипотеза : Х n порождается функцией .

Разделим [a,b] на k непересекающихся интервалов ;

Пусть — количество наблюдений в j-м интервале: ;

— вероятность попадания наблюдения в j-ый интервал при выполнении гипотезы ;

— ожидаемое число попаданий в j-ый интервал;

Статистика: — Распределение хи-квадрат с k-1 степенью свободы.

Критерий ошибается на выборках с низкочастотными (редкими) событиями.Решить эту проблему можно отбросив низкочастотные события, либо объединив их с другими событиями.Этот способ называется коррекцией Йетса (Yates’ correction).

Критерий согласия Пирсона (χ 2 ) применяют для проверки гипотезы о соответствии эмпирического распределения предполагаемому теоретическому распределению F(x) при большом объеме выборки (n ≥ 100). Критерий применим для любых видов функции F(x), даже при неизвестных значениях их параметров, что обычно имеет место при анализе результатов механических испытаний. В этом заключается его универсальность.

Использование критерия χ 2 предусматривает разбиение размаха варьирования выборки на интервалы и определения числа наблюдений (частоты) nj для каждого из e интервалов. Для удобства оценок параметров распределения интервалы выбирают одинаковой длины.

Число интервалов зависит от объема выборки. Обычно принимают: при n = 100 e = 10 ÷ 15, при n = 200 e = 15 ÷ 20, при n = 400 e = 25 ÷ 30, при n = 1000 e = 35 ÷ 40.

Интервалы, содержащие менее пяти наблюдений, объединяют с соседними. Однако, если число таких интервалов составляет менее 20 % от их общего количества, допускаются интервалы с частотой nj ≥ 2.

Статистикой критерия Пирсона служит величина
, (3.91)
где pj — вероятность попадания изучаемой случайной величины в j-и интервал, вычисляемая в соответствии с гипотетическим законом распределением F(x). При вычислении вероятности pj нужно иметь в виду, что левая граница первого интервала и правая последнего должны совпадать с границами области возможных значений случайной величины.Например, при нормальном распределении первый интервал простирается до -∞, а последний — до +∞.

Нулевую гипотезу о соответствии выборочного распределения теоретическому закону F(x) проверяют путем сравнения вычисленной по формуле (3.91) величины с критическим значением χ 2 α, найденным по табл. VI приложения для уровня значимости α и числа степеней свободы k = e1 — m — 1. Здесь e1 — число интервалов после объединения; m — число параметров, оцениваемых по рассматриваемой выборке.Если выполняется неравенство
χ 2 ≤ χ 2 α (3.92)
то нулевую гипотезу не отвергают.При несоблюдении указанного неравенства принимают альтернативную гипотезу о принадлежности выборки неизвестному распределению.

Недостатком критерия согласия Пирсона является потеря части первоначальной информации, связанная с необходимостью группировки результатов наблюдений в интервалы и объединения отдельных интервалов с малым числом наблюдений.В связи с этим рекомендуется дополнять проверку соответствия распределений по критерию χ 2 другими критериями.Особенно это необходимо при сравнительно малом объеме выборки (n ≈ 100).

В таблице приведены критические значения хи-квадрат распределения с заданным числом степеней свободы.Искомое значение находится на пересечении столбца с соответствующим значением вероятности и строки с числом степеней свободы. Например, критическое значение хи-квадрат распределения с 4-мя степенями свободы для вероятности 0.25 составляет 5.38527. Это означает, что площадь под кривой плотности хи-квадрат распределения с 4-мя степенями свободы справа от значения 5.38527 равна 0.25.

Источники:

http://www.termist.com/bibliot/stud/stepnov/081_2.htm

http://medstatistic.ru/theory/hi_kvadrat.html

http://studopedia.ru/20_11160_kriteriy-soglasiya-pirsona.html

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector