Функция называется нечетной. Четность функции
Нечетная функция
Нечётная фу́нкция — функция, меняющая знак при изменении знака независимого переменного.
Чётная фу́нкция — это функция, не изменяющая своего значения при изменении знака независимого переменного.
Нечётная фу́нкция — функция, симметричная относительно центра координат, а чётная — функция, симметричная относительно оси ординат.
Содержание
Определения
- Функция
называется нечётной, если справедливо равенство
- Функция f называется чётной, если справедливо равенство
- Если не выполняется ни одно из этих равенств, то функция называется функцией общего вида.
Свойства
- График нечётной функции симметричен относительно начала координатO .
- График чётной функции симметричен относительно оси ординат Oy .
- Произвольная функция
может быть представлена в виде суммы нечётной и чётной функций:
f(x) = g(x) + h(x),
- Функция
— единственная функция, одновременно являющаяся нечётной и чётной.
- Сумма, разность и вообще любая линейная комбинация чётных функций чётна, а нечётных — нечётна.
- Произведение или дробь двух нечётных функций чётно.
- Произведение или дробь двух чётных функций чётно.
- Произведение или дробь нечётной и чётной функций нечётно.
- Композиция двух нечётных функция нечётна.
- Композиция двух чётных функций чётна.
- Композиция чётной функции с нечётной чётна.
- Композиция любой функции с чётной чётна (но не наоборот).
- Функция, обратная чётной, чётна, а нечётной — нечётна.
- Производная чётной функции нечётна, а нечётной — чётна.
- То же верно про производную третьего, пятого и вообще любого нечётного порядка.
- Производная чётного порядка сохраняет чётность.
Примеры
Нечётные функции
- Нечётная степень
где
— произвольное целое число.
- Синус
.
- Тангенс
.
Чётные функции
- Чётная степень
где
— произвольное целое число.
- Косинус
.
Вариации и обобщения
- Понятие чётности и нечётности функций естественно обобщаются на случай отображений между векторными пространствами.
Wikimedia Foundation . 2010 .
Смотреть что такое “Нечетная функция” в других словарях:
НЕЧЕТНАЯ ФУНКЦИЯ — функция, удовлетворяющая равенству f( x) = f(x) при всех х … Большой Энциклопедический словарь
нечетная функция — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN odd function … Справочник технического переводчика
НЕЧЕТНАЯ ФУНКЦИЯ — функция, меняющая знак при изменении знака независимого переменного, т. е. функция, удовлетворяющая условию . График Н. ф. симметричен относительно начала координат … Математическая энциклопедия
нечётная функция — функция, удовлетворяющая равенству f(–х) = f(х) при всех х. * * * НЕЧЕТНАЯ ФУНКЦИЯ НЕЧЕТНАЯ ФУНКЦИЯ, функция, удовлетворяющая равенству f( x) = f(x) при всех х … Энциклопедический словарь
Единичная функция Хевисайда — Функция Хевисайда, единичная ступенчатая функция, ступенька положения специальная математическая функция, чьё значение равно нулю для отрицательных аргументов и единице для положительных аргументов … Википедия
Единичная Хевисайда — Единичная функция Хевисайда Функция Хевисайда, единичная ступенчатая функция, ступенька положения специальная математическая функция, чьё значение равно нулю для отрицательных аргументов и единице для положительных аргументов … Википедия
Многочлены Лежандра — Многочлен Лежандра многочлен, который в наименьшей степени отклоняется от нуля в смысле среднего квадратического. Образует ортогональную систему многочленов, на отрезке по мере Лебега. Многочлены Лежандра могут быть получены из многочленов… … Википедия
ОБРАТНОЕ ОТОБРАЖЕНИЕ — (обратный оператор) к однозначному отображению (оператору) однозначное отображение gтакое, что где нек рые множества. Если gудовлетворяет лишь условию (1), то оно наз. правым обратным отображением к f, если лишь (2) левым обратным отображением к… … Математическая энциклопедия
ЯКОБИ ЭЛЛИПТИЧЕСКИЕ ФУНКЦИИ — эллиптические функции, возникшие при непосредственном обращении эллиптических интегралов в нормальной форме Лежандра. Эта задача обращения была решена в 1827 независимо К. Якоби (С. Jacobi) и, в несколько иной форме, Н. Абелем (N. Abel).… … Математическая энциклопедия
ВЕИЕРШТРАССА ЭЛЛИПТИЧЕСКИЕ ФУНКЦИИ — ф>тнкции, положенные К. Вейерштрассом в основу его общей теории эллиптических функций, излагавшейся им с 1862 на лекциях в Берлинском университете (см. [1], [2]). В отличие от более раннего построения теории эллиптич. функций, связанного с… … Математическая энциклопедия
Четность и нечетность функции. Период функции. Экстремумы функции
Содержание
Способы задания функции
Пусть функция задается формулой: y=2x^<2>-3 . Назначая любые значения независимой переменной x , можно вычислить, пользуясь данной формулой соответствующие значения зависимой переменной y . Например, если x=-0,5 , то, пользуясь формулой, получаем, что соответствующее значение y равно y=2 cdot (-0,5)^<2>-3=-2,5 .
Взяв любое значение, принимаемое аргументом x в формуле y=2x^<2>-3 , можно вычислить только одно значение функции, которое ему соответствует. Функцию можно представить в виде таблицы:
Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3 ; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.
Еще функции возможно задать, используя графики. С помощью графика устанавливается какое значение функции соотносится с определенным значением x . Наиболее часто, это будет приближенное значение функции.
Четная и нечетная функция
Функция является четной функцией, когда f(-x)=f(x) для любого x из области определения. Такая функция будет симметрична относительно оси Oy .
Функция является нечетной функцией, когда f(-x)=-f(x) для любого x из области определения. Такая функция будет симметрична относительно начала координат O (0;0) .
Функция является ни четной, ни нечетной и называется функцией общего вида, когда она не обладает симметрией относительно оси или начала координат.
Исследуем на четность нижеприведенную функцию:
D(f)=(-infty ; +infty ) с симметричной областью определения относительно начала координат. f(-x)= 3 cdot (-x)^<3>-7 cdot (-x)^<7>= -3x^<3>+7x^<7>= -(3x^<3>-7x^<7>)= -f(x) .
Значит, функция f(x)=3x^<3>-7x^ <7>является нечетной.
Периодическая функция
Функция y=f(x) , в области определения которой для любого x выполняется равенство f(x+T)=f(x-T)=f(x) , называется периодической функцией с периодом T neq 0 .
Повторение графика функции на любом отрезке оси абсцисс, который имеет длину T .
Промежутки, где функция положительная, то есть f(x) > 0 – отрезки оси абсцисс, которые отвечают точкам графика функции, лежащих выше оси абсцисс.
f(x) > 0 на (x_<1>; x_<2>) cup (x_<3>; +infty )
Промежутки, где функция отрицательная, то есть f(x) 0 , для которого выполняется неравенство left | f(x) right | neq K для любого x in X .
Пример ограниченной функции: y=sin x ограничена на всей числовой оси, так как left | sin x right | neq 1 .
Возрастающая и убывающая функция
О функции, что возрастает на рассматриваемом промежутке принято говорить как о возрастающей функции тогда, когда большему значению x будет соответствовать большее значение функции y=f(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значения аргумента x_ <1>и x_ <2>, причем x_ <1>> x_ <2>, будет y(x_<1>) > y(x_<2>) .
Функция, что убывает на рассматриваемом промежутке, называется убывающей функцией тогда, когда большему значению x будет соответствовать меньшее значение функции y(x) . Отсюда выходит, что взяв из рассматриваемого промежутка два произвольных значений аргумента x_ <1>и x_ <2>, причем x_ <1>> x_ <2>, будет y(x_<1>) 0 четная функция возрастает, то убывает она при x 0 четная функция убывает, то возрастает она при x 0 нечетная функция возрастает, то возрастает она и при x 0 , то она будет убывать и при x f(x_<0>) . y_
Точкой максимума функции y=f(x) принято называть такую точку x=x_ <0>, у которой ее окрестность будет иметь остальные точки (кроме самой точки x=x_ <0>), и для них тогда будет выполняется неравенство f(x)
Четные и нечётные функции.
Область определения функции называется симметричной, если для любого х из области определения функции существует ( -х ) тоже принад-лежащий этой области.
Функция у = f(х) называется четной, если она имеет симметричную область определения и для всех х из этой области выполняется равенство
Функция у = f(х) называется нечетной, если она имеет симметричную область определения и для всех х из этой области выполняется равенство
Графики четных функции симметричны относительно оси ординат, гра-фики нечетных функций симметричны относительно начала координат.
Например: функции у = х 2 , y = x 4 – четные ( рис 1.1 ), а функции у = х 3 , у = х – нечетные ( рис 1.2 ).
Периодические функции.
Функция у = f(х) называется периодической, если существует такое число Т ≠ 0, что вместе с любым х из области определения функции точки (х + кТ) тоже принадлежат этой области и при этом выполняется неравенство
f(х) = f(х + кТ ). Число Т называется периодом функции.
Например у = sin x периодическая функция с периодом Т = 2π. (рис 1.9 ).
Ограниченные функции.
Функция у = f(х) называется ограниченной сверху в некоторой области значений аргумента, если существует такое число М, что для всех х из этой области f(х) ≤ М.
Функция у = f(х) называется ограниченной снизу в некоторой области, если существует такое число N, что для всех х из этой области f(х) ≥ N.
Функция называется ограниченной, если она ограничена снизу и сверху.
Например: функция у = ограничена снизу числом 0 (рис. 1.3 )
функция у = 2 –х 2 ограничена сверху числом 2
функция у = sin x ограниченная │sin x│≤ 1 (рис. 1.9 ).
109.201.137.33 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Источники:
http://dic.academic.ru/dic.nsf/ruwiki/1060605
http://academyege.ru/page/chetnost-i-nechetnost-funkcii-period-funkcii-ehkstremumy-funkcii.html
http://studopedia.ru/19_328949_chetnie-i-nechetnie-funktsii.html