Число из 10 цифр как называется. Как называется самое большое число в мире
Как называется самое большое число в мире
ТОП-10 самых больших известных чисел
Как показывает практика, предельного понятия исчисления нет. Когда дети задают вопрос о том, какое самое большое число, ответить можно только в рамках абстрактного понятия.
Чтобы разобраться в этом вопросе и улучшить кругозор, можно изучить ТОП-10 самых больших известных чисел, которые известны человечеству на сегодняшний день.
Известно как 10 с 80 нулями. В Америке и на территории Англии называют — квинквавигинтиллион. Казалось бы, что может быть больше, ведь это число может охарактеризовать количество частиц во вселенной.
Однако 10 в 80-ой степени далеко не самое большое значение, которое на сегодняшний день известно ученым.
Гугол
Интересный факт, всеми известная поисковая система подарила этому числу большую популярность. Однако значение известно лишь истинным фанатам. Говоря о том, сколько это на самом деле можно выделить число со 100-та нулями.
Термин был придуман в 1938 году, автором стал Милтон Сиротта, которому было всего 9 лет. Существует теория, что когда возраст Земли достигнет гугла, во Вселенной произойдет взрыв черной дыры, что позволит изучить границы за ее пределами.
8,5 х 10^185
С одной стороны это значение обозначает самую маленькую характеристику длины, а с другой это одно из самых больших чисел. В науке обозначается как Длина Планка.
В отличие от других значений имеет распространение в квантовой физике и стала частью теории струн. Говоря о том, сколько же это число значит, можно выделить — 0,00000000000000000000000000000616199 метра.
2^43,112,609 – 1
Интересный факт — в этом числе практически 18 миллионов цифр. Обнаружили сравнительно недавно, т.е в 2008 году в ходе GIMPS.
Несмотря на свою величину, занимает лишь 47 место в порядке размера.
Гуголплекс
Впервые те, кто не сталкивался плотно с наукой, могли услышать это значение в фильме «Назад Будущее». Во время одного из мозговых штурмов Эммет Браун обронил слово Гуголплекс.
Как показали успешные поиски фанатов — такое значение существует. Гуголплекс — равен 10-ти в степени гугол. Для абстрактного понятия можно представить, что эта сумма больше чем частиц во Вселенной, которые были изучены за все существование науки.
Числа Скьюза
Достаточно много теорий по поводу величины этого значений. Однако если взять за основу самую популярную, то окажется, что Скьюз больше чем гуголплекс в несколько раз. Джон Литтлвуд в далеком 1914 году делал первые открытия, которые доказывали существование этого числа.
Однако доказать значение получилось только у Стенли Скьюза в 1933, после того, как он взял в основу теорию Римана.
Теория Пуанкаре
Число и одновременно теория о том, сколько бы времени понадобилось бы нашей Вселенной, что вернуться в исходное состояние.
Говоря простым языком, 10^10^10^10^10^1,1 лет нужно для того, чтобы история человечества вновь повторилась.
Значение Грэма
Одно из самых больших чисел, которое стало известно лишь в конце 80-х. Для его простой записи используют метод Кнута. Запомнить написание практически невозможно. Чтобы оценить масштабность значения, можно представить как число Пуанкаре умножают на несколько раз.
Особенность Грэма заключается в том, что для записи использую несколько уровней, самая простая выглядит так: G=f64(4), где f(n)=3↑^n3.
Если разбирать слои, то можно понять 3↑↑↑↑3 это уже больше чем число Пуанкаре. Одни из интересных фактов — первые числа пока неизвестно миру, а вот последние (всего 10) Грэм все же успел вычислить — 2464195387.
Бесконечность
С научной точки зрения число имеет огромную величину. Она настолько большая, что порой человеческой возможности абстракции не хватает фантазии чтобы ее представить.
Интересный факт, бесконечность ровно на половину делится на четные и нечетные числа. Ученые сами до конца не выяснили до конца какую величину обозначает мера «бесконечность». Ведь сегодня известно лишь 10^80 частиц.
Также значение бесконечности доказывает, что если вся вселенная устроена по принципу земли — т.е атомы складываются рано или поздно воедино, это значит копия планеты в теории может существовать. Более того, дублироваться может и сама вселенная.
Однако в такую теорию верят далеко не все ученые, например Дорон Зильбергер из Израиля настаивает на то, что вскоре найдется число больше бесконечности.
Когда это произойдет не уточняется, ведь предельное число бесконечности лишь абстрактное понимание. Тем не менее на сегодняшний день именно о бесконечности говорят в школах, и именно это значение является верховным в математической философии.
Несмотря на абстрактность теории о бесконечности, есть идея, что это не конечное число. Как показывает практика, у каждого числа есть своя принадлежность, т.е к плюсу или минусу.
Если из суммы натуральных чисел вычесть сумму их квадрата — можно получить — ∞. Это значит, что границы бесконечности не могут заканчиваться только на одной теории о конечном числе. Чтобы углубиться в этот вопрос можно изучить метод Лопиталя.
Названия больших чисел.
Построение названия большого числа начинается с добавления суффикса «-иллион» к латинскому числительному. Название числа в 1 000 раз большего предыдущего формируется из того же латинского числительного, но в этом случае берется суффикс «-иллиард». Т.е. после триллиона в длинной системе наименования чисел следует триллиард, а вот после него квадриллион, далее квадриллиард и так далее.
Количество нулей в числе, которое записано в длинной системе и которое оканчивается суффиксом «-иллион», вычисляется при помощи формулы 6·x (где x — латинское числительное) и по формуле 6·x+3 для чисел, которые оканчиваются на «-иллиард».
Именные названия степеней тысячи.
Название числа
Значение числа
мириада или десять тысяч
10 18 [экса] тера
10 24 [иотта] пета
Произношение больших чисел большего порядка зачастую отличается.
- 10 100 – гугол (число было придумано 9-летним племянником американского математика Э. Каснера)
- 10 123 – квадрагинтиллион
- 10 153 – квинквагинтиллион
- 10 183 – сексагинтиллион
- 10 213 – септуагинтиллион
- 10 243 – октогинтиллион
- 10 273 – нонагинтиллион
- 10 303 – центиллион
Названия еще больших чисел получаем прямым или обратным порядком латинских числительных (правильные достоверно не известны):
- 10 306 – анцентиллион или центуниллион
- 10 309 – дуоцентиллион или центдуоллион
- 10 312 – трецентиллион или центтриллион
- 10 315 – кватторцентиллион или центквадриллион
- 10 402 – третригинтацентиллион или центтретригинтиллион
Второй вариант больше соответствует построению чисел в латинском языке и не в таком случае не возникают двусмысленности (например, число трецентиллион по первому написанию является и 10 903 и 10 312 ), поэтому мы считаем второй вариант более правильным.
Следующие числа:
- 10 603 – дуцентиллион
- 10 903 – трецентиллион
- 10 1203 – квадрингентиллион
- 10 1503 – квингентиллион
- 10 1803 – сесцентиллион
- 10 2103 – септингентиллион
- 10 2403 – октингентиллион
- 10 2703 – нонгентиллион
- 10 3003 – миллиллион (или милиаиллион)
- 10 6003 – дуомилиаллион
- 10 9003 – тремиллиаллион
- 10 15003 – квинквемилиаллион
- 10 308760 – дуцентдуомилианонгентновемдециллион
- 10 3000003 – милиамилиаиллион
- 10 6000003 – дуомилиамилиаиллион
- 10 10100 – гуголплекс
Самое большое число в мире
Считается, что концепция чисел впервые возникла, когда доисторические люди начали использовать свои пальцы для подсчета чего-либо. С тех пор человечество прошло долгий путь. Теперь мы используем калькуляторы и компьютеры для подсчета самых больших чисел. И даже появились названия для чисел, которые настолько велики, что их с трудом можно представить.
Бесконечность счетных чисел
Казалось бы, ответ на вопрос о том, каково самое большое число в математике — очень прост. Бесконечность, верно? Но это не совсем правильно. Ведь бесконечность — вовсе не число, а концепция. Идея.
Бесконечность (infinitum) — это понятие, которое в переводе с латинского означает «без границ». Определение бесконечности в математике гласит, что независимо от того, насколько велико число, вы всегда можете добавить к нему 1, и оно станет больше.
Поэтому, строго говоря, не существует такого понятия, как самое большое число в мире. Можно лишь назвать наибольшее число, которому дали конкретное название.
Вот некоторые наиболее известные названия больших чисел:
Как называется самое большое простое число
Простое число — то, которое делится только на себя и на единицу. В конце 2018 года американец Патрик Лярош представил научному миру самое большое простое число.
- Длина его — 24 862 048 символов. Для сравнения: в эпохальном произведении Л.Н. Толстого «Война и мир» около 6-7 миллионов символов, если учитывать знаки препинания и пробелы.
- Это число можно записать следующим образом: 2 82589933 -1
- А читается оно так: два в степени 82589933 минус один.
- Существует целый онлайн-проект GIMPS, нацеленный как раз на поиск самых больших простых чисел. В нем принимают участие математики из разных стран. Поэтому новые рекордсмены появляются часто. Работают ученые, что называется, не за страх, а за деньги. Ведь тому, кто откроет следующее наибольшее простое число Мерсенна достанется 3000 долларов.
Какое самое большое число в мире
В 1980 году в Книгу рекордов Гиннеса вошло число Грэма (оно же G64 или G), названное в честь американского математика Рональда Грэма. Оно является наибольшим числом, которое когда-либо использовалось в важном математическом доказательстве. Речь идет про теорию Франка Рамсея.
Кратко об этой теории: представим себе N-мерный куб, его вершины в случайном порядке соединены красными или синими отрезками-линиями. А наша задача — понять, до какого значения N возможно (если по-разному закрашивать ребра куба), избежать ситуации, при которой одна плоскость в кубе будет окрашена одним цветом. То есть у нас не должен получиться одноцветный «конвертик».
Математики позакрашивали кубик и так и эдак, получилось, что до шестимерного куба можно исхитриться и сделать, чтобы линии одного цвета, соединяющие четыре вершины, не лежали в одной плоскости. А вот с семимерным, как выяснили Грэм и Ротшильд, такой фокус уже не провернешь. И с восьмимерным. И… «и так далее», которое, впрочем, не бесконечно, а заканчивается фантастически гигантским числом. Вот его-то и именуют числом Грэма. Кстати, в настоящее время решение Грэма и Ротшильда устарело. Математики выяснили, что 6-7-8-9-10-11-12-мерные кубы все же можно покрасить без «конвертов». Но где-то в промежутке между 13 и числом Грэма гарантированно есть число выше которого «конверты» в любом случае будут.
Число Грэма получило всемирное признание в 1977 году, когда известный популяризатор науки Мартин Гарднер написал об этом в Scientific American.
И хотя с тех пор в математической науке были и другие кандидаты на титул самого большого числа, «детище» Грэма является самым распиаренным и общеизвестным. И если вы слышали про «гугольное семейство»:
- гугол — 10 100 ;
Или: 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 - гуголплекс — 10 гугол ,
то знайте, что этими числами в математике лишь «разминаются», а число Грэма в немыслимое количество раз больше, чем они. И даже больше, чем число Скьюза, находящееся между 10 19 и 1,3971672·10 316 и приблизительно равное e 727,951336108 .
Любопытно, что придумав гугол американский математик Эдвард Казнер хотел показать студентам разницу между невероятно большим числом и бесконечностью. Тогда число Грэма может просто «взорвать мозг».
Возможно ли представить и записать число за гранью понимания
Математики не смогут назвать вам точное количество цифр в числе Грэма, не говоря уже о том, чтобы досчитать до него. Известны лишь последние 50 цифр самого большого числа в мире — это …03222348723967018485186439059104575627262464195387.
А вот цифры, с которых начинается G64 неизвестны, и вряд ли когда-либо будут.
Давайте сравним трех монстров: гугол, гуголплекс и число Грэма.
- Гугол — это количество песчинок, которые могут поместиться во вселенной, умноженное на 10 миллиардов. Итак, представьте себе вселенную, заполненную мелкими песчинками — на десятки миллиардов световых лет над Землей, под ней, перед ней, позади нее — бесконечный песок.
Теперь представьте, что в какой-то момент вы берете одну песчинку, чтобы рассмотреть ее под мощным микроскопом. И видите, что на самом деле это не единственное зерно, а 10 миллиардов микроскопических зерен, а все вместе они размером с песчинку. Если бы это было так для каждой отдельной песчинки в этой гипотетической вселенной, то общее количество этих микроскопических зерен было бы гуголом.
- Для количественной оценки гуголплекса астроном и астрофизик Карл Саган привел пример заполнения всего объема наблюдаемой вселенной мелкими частицами пыли размером приблизительно 1,5 микрометра. Исходя из этого, общее количество различных комбинаций, в которых эти частицы могут быть расположены, будет равно примерно одному гуголплексу.
- А теперь представим, что гуголплекс — это даже не песчинка, а крохотная точка, которую можно рассмотреть лишь в самый мощный микроскоп. И у нас вся вселенная заполнена такими крохотными точками. Так вот, даже это не идет ни в какое сравнение с числом Грэма. Но что, если мы хотим использовать все пространство наблюдаемой вселенной для его записи (предположим, что запись каждой цифры занимает как минимум объём Планка)? Увы, у нас это не выйдет! Но всегда можно пойти другим путем.
Как записать G64 с помощью метода Кнута
В 1976 году американский ученый Дональд Кнут предложил понятие сверхстепеней или нотацию Кнута. Это метод, позволяющий при помощи стрелочек, направленных вверх, записывать очень большие числа. Возведение в степень обозначается одной стрелкой вверх: ↑.
Вот как выглядит эта нотация: a ↑ b = ab = a × a × a × …, и так b раз.
- Например 3↑3 = 3³.
- Гугол записывается так 10↑10↑2.
- А гуголплекс — 10↑10↑10↑2
Важной особенностью стрелок вверх является то, что они растут очень быстро. Экспонентация растет гораздо быстрее, чем умножение. 2 × 10 — это всего лишь 20, но 2↑10 = 1024. Таким же образом, каждый новый уровень стрелок растет намного быстрее, чем предыдущий уровень.
Если мысленно представить себе степенную башню из троек 3↑↑↑4 то получится конструкция, размером от Земли до Марса. А ведь мы еще даже не дошли до «нижней ступеньки», ведущей нас к числу Грэма.
Мы можем описать число Грэма огромным набором этих стрелок вверх.
Проще всего думать об этом как об итерационном процессе. Мы начинаем снизу с g 1 = 3 ↑↑↑↑ 3, а затем создаем вторую строку (назовем ее g 2) с g 1 стрелками между тройками.
Тогда g 3 — это две тройки, разделенные g 2 стрелками вверх и так далее, пока g 64 с g 63 стрелками между тройками не будет числом Грэма.
Если выбрать продолжительность жизни, равную числу Грэма вместо бессмертия, то результат будет практически одинаков. Даже если предположить, что условия во Вселенной, в Солнечной системе и на Земле вечно останутся неизменными, человеческий мозг никак не мог бы выдержать столь длинный промежуток времени без пагубных изменений.
Источники:
http://www.calc.ru/Nazvaniya-Bolshikh-Chisel.html
http://basetop.ru/samoe-bolshoe-chislo-v-mire/