Какие элементы имеют состав ядра. Состав и строение атомного ядра (кратко)
Состав и строение атомного ядра (кратко)
Задолго до появления достоверных данных о внутреннем устройстве всего сущего греческие мыслители представляли себе материю в виде мельчайших огненных частиц, которые находились в постоянном движении. Вероятно, это видение мирового устройства вещей было выведено из чисто логических умозаключений. Несмотря на некоторую наивность и абсолютную бездоказательность этого утверждения, оно оказалось верным. Хотя подтвердить смелую догадку ученые смогли лишь двадцать три века спустя.
Строение атомов
В конце XIX века были исследованы свойства разрядной трубки, через которую пропущен ток. Наблюдения показали, что при этом испускается два потока частиц:
- Катодные лучи, которые образовывались вблизи электродов, соединенных с отрицательным концом батареи. Катодные лучи проходили через трубку и смогли проскочить через отверстие в положительном электроде, как поток заряженных частиц. Наблюдение показали, что отношения заряда такой частицы к ее массе всегда одинаково и не зависит от вида газа.
- Положительные лучи. Второй поток частиц идет в противоположном направлении и может проходить в отверстие в отрицательном электроде. Отклонения в полях доказывают, что они имеют высокие скорости и различные значения отношения заряда к массе.
Отрицательные частицы катодных лучей были названы электронами. В дальнейшем частицы с тем же отношением заряда к массе были обнаружены во многих процессах. Электроны казались универсальными составляющими различных атомов, довольно легко отделяющимися при бомбардировке ионов и атомов.
Частички, несущие положительный заряд, представлялись осколками атомов после потери ими одного или нескольких электронов. На самом деле положительные лучи представляли собой группы атомов, лишенных отрицательных частиц, и вследствие этого имеющих положительный заряд.
Модель Томпсона
На основании опытов было выяснено, что положительные и отрицательные частички представляли суть атома, были его составляющими. Английский ученый Дж. Томсон предложил свою теорию. По его мнению, строение атома и атомного ядра представляли собой некую массу, в которой отрицательные заряды были втиснуты в положительно заряженный шар, как изюм в кекс. Компенсация зарядов делала «кекс» электрически нейтральным.
Модель Резерфорда
Молодой американский ученый Резерфорд, анализируя треки, оставшиеся после альфа-частиц, пришел к выводу, что модель Томпсона несовершенна. Некоторые альфа-частицы отклонялись на небольшие углы – в 5-10 o . В редких случаях альфа-частицы отклонялись на большие углы в 60-80 o , а в исключительных случаях углы были очень большими – 120-150 o . Модель атома Томпсона не могла объяснить такую разницу.
Резерфорд предлагает новую модель, объясняющую строение атома и атомного ядра. Физика процессов утверждает, что атом должен быть пуст на 99%, с крошечным ядром и вращающимися вокруг него электронами, которые движутся по орбитам.
Отклонения при ударах он объясняет тем, что частицы атома имеют собственные электрические заряды. Под воздействием бомбардирующих заряженных частиц атомные элементы ведут себя как обыкновенные заряженные тела в макромире: частицы с одинаковыми зарядами отталкиваются друг от друга, а с противоположными – притягиваются.
Состояние атомов
В начале прошлого века, когда были запущены первые ускорители элементарных частиц, все теории, объяснявшие строение атомного ядра и самого атома, ждали экспериментальной проверки. К тому времени были уже досконально изучены взаимодействия альфа- и бета-лучей с атомами. Вплоть до 1917 года считалось, что атомы либо стабильны, либо радиоактивны. Стабильные атомы нельзя расщепить, распад радиоактивных ядер невозможно контролировать. Но Резерфорду удалось опровергнуть это мнение.
Первый протон
В 1911 году Э. Резерфорд выдвинул идею о том, что все ядра состоят из одинаковых элементов, основой для которых является атом водорода. На эту идею ученого натолкнул важный вывод предыдущих изучений строения вещества: массы всех химических элементов делятся без остатка на массу водорода. Новое предположение открывало невиданные возможности, позволяющие по-новому видеть строение атомного ядра. Ядерные реакции должны были подтвердить или опровергнуть новую гипотезу.
Опыты проводились в 1919 году с атомами азота. Бомбардируя их альфа-частицами, Резерфорд добился удивительного результата.
Атом N поглотил альфа-частицу, превратился после этого в атом кислорода О 17 и испустил ядро водорода. Это стало первым искусственным превращением атома одного элемента в другой. Подобный опыт вселял надежду на то, что строение атомного ядра, физика существующих процессов позволяют осуществлять и другие ядерные превращения.
Ученый использовал в своих опытах метод сцинтилляции – вспышки. По частоте вспышек он делал выводы о том, каким является состав и строение атомного ядра, о характеристиках рожденных частиц, об их атомной массе и порядковом номере. Неизвестная частица было названа Резерфордом протоном. Она имела все характеристики атома водорода, лишенного своего единственного электрона – одиночный положительный заряд и соответствующую массу. Таким образом было доказано, что протон и ядро водорода являются одними и теми же частицами.
В 1930 году, когда были построены и запущены первые большие ускорители, модель атома Резерфорда удалось проверить и доказать: каждый атом водорода состоит из одинокого электрона, положение которого невозможно определить, и рыхлого атома с одиноким положительным протоном внутри. Поскольку при бомбардировке из атома могут влетать протоны, электроны и альфа-частицы, ученые думали, что они и есть составляющие любого ядра атома. Но подобная модель атома ядра казалась неустойчивой – электроны были слишком велики для того, чтобы умещаться в ядре, кроме этого, существовали серьезные затруднения, связанные с нарушением закона количества движения и сохранения энергии. Эти два закона, как строгие бухгалтеры, говорили о том, что количество движения и масса при бомбардировке исчезают в неизвестном направлении. Поскольку эти законы являлись общепринятыми, следовало отыскать объяснения для подобной утечки.
Нейтроны
Ученые всего мира ставили эксперименты, направленные на открытие новых составляющих ядер атомов. В 1930-х годах немецкие физики Беккер и Боте бомбардировали атомы бериллия альфа-частицами. При этом было зарегистрировано неизвестное излучение, которое было решено назвать G-лучами. Подробные исследования рассказали о некоторых особенностях новых лучей: они могла распространяться строго по прямой, не взаимодействовали с электрическими и магнитными полями, обладали высокой проникающей способностью. Позднее частицы, образующие этот вид излучения, были найдены при взаимодействии альфа-частиц с другими элементами – бором, хромом и прочими.
Гипотеза Чедвика
Тогда Джеймс Чедвик, коллега и ученик Резерфорда, в журнале «Нэйчур» дал короткое сообщение, которое позднее стало общеизвестным. Чедвик обратил внимание на тот факт, что противоречия в законах сохранения легко разрешаемы, если допустить, что новое излучение является потоком нейтральных частиц, каждая из которых имеет массу, приблизительно равную массе протона. Рассматривая это предположение, физики существенно дополнили гипотезу, объясняющую строение атомного ядра. Кратко суть дополнений сводилась к новой частице и ее роли в строении атома.
Свойства нейтрона
Обнаруженной частице было дано имя «нейтрон». Новооткрытые частички не образовывали вокруг себя электромагнитных полей, легко проходили через вещество, не теряя при этом энергии. При редких столкновениях с легкими ядрами атомов нейтрон в состоянии выбить из атома ядро, теряя при этом значительную часть своей энергии. Строение атомного ядра предполагало наличие различного количества нейтронов в каждом веществе. Атомы с одинаковым зарядом ядра, но с различным количеством нейтронов получили название изотопов.
Нейтроны послужили отличной заменой альфа-частицам. В настоящее время именно их используют для того, чтобы изучить строение атомного ядра. Кратко их значение для науки описать невозможно, но именно благодаря бомбардировке нейтронами атомных ядер физики смогли получить изотопы практически всех известных элементов.
Состав ядра атома
В настоящее время строение атомного ядра представляет собой совокупность протонов и нейтронов, скрепленных между собой ядерными силами. Например, ядро гелия представляет собой комочек из двух нейтронов и двух протонов. Легкие элементы имеют практически равное число протонов и нейтронов, у тяжелых элементов количество нейтронов значительно больше.
Связь массы и энергии
В 1932 камера Вильсона запечатлела удивительный фотоснимок, доказывающий существование положительных заряженных частиц, с массой электрона.
Таким образом, теория, разработанная для макромира, полностью подходила для описания поведения мельчайших элементов вещества.
Строение атомного ядра
Количественные показатели в радиоэкологии.
Особенностью радиоактивного загрязнения в отличие от загрязнения другими поллютантами является то, что вредное воздействие на человека и объекты окружающей среды оказывает не сам радионуклид (поллютант), а излучение, источником которого он является.
Однако бывают случаи, когда радионуклид – токсичный элемент. Например, после аварии на Чернобыльской АЭС в окружающую среду с частицами ядерного топлива были выброшены плутоний 239, 242 Рu. Кроме того, что плутоний – альфа-излучатель и при попадании внутрь организма представляет значительную опасность, плутоний сам по себе – токсичный элемент.
По этой причине используют две группы количественных показателей: 1) для оценки содержания радионуклидов и 2) для оценки воздействия излучения на объект.
Активность – количественная мера содержания радионуклидов в анализируемом объекте. Активность определяется числом радиоактивных распадов атомов в единицу времени. Единицей измерения активности в системе СИ является Беккерель (Бк) равный одному распаду в секунду (1Бк = 1 расп/с). Иногда используется внесистемная единица измерения активности – Кюри (Ки); 1Ки = 3,7 ×1010 Бк.
Доза излучения – количественная мера воздействия излучения на объект.
В связи с тем, что воздействие излучения на объект можно оценивать на разных уровнях: физическом, химическом, биологическом; на уровне отдельных молекул, клеток, тканей или организмов и т. д., используют несколько видов доз: поглощенную, эффективную эквивалентную, экспозиционную.
Для оценки изменения дозы излучения во времени используют показатель «мощность дозы». Мощность дозы – это отношение дозы ко времени. Например, мощность дозы внешнего облучения от естественных источников радиации составляет на территории России 4-20 мкР/ч.
Основной норматив для человека – основной дозовый предел (1 мЗв/год) – вводится в единицах, эффективной эквивалентной дозы. Существуют нормативы и в единицах активности, уровни загрязнения земель, ВДУ, ПГП, СанПиН и др.
Строение атомного ядра.
Атом – это мельчайшая частица химического элемента, сохраняющая все его свойства. По своей структуре атом представляет сложную систему, состоящую из находящегося в центре атома положительно заряженного ядра очень малого размера (10 -13 см) и отрицательно заряженных электронов, вращающихся вокруг ядра на различных орбитах. Отрицательный заряд электронов равен положительному заряду ядра, при этом в целом оказывается электрически нейтральным.
Атомные ядра состоят из нуклонов – ядерных протонов (Z – число протонов) и ядерных нейтронов (N – число нейтронов). « Ядерные» протоны и нейтроны отличаются от частиц в свободном состоянии. Например, свободный нейтрон, в отличие от связанного в ядре, нестабилен и превращается в протон и электрон.
Число нуклонов Ам (массовое число) представляет собой сумму чисел протонов и нейтронов: Ам = Z+ N.
Протон – элементарная частица любого атома, он имеет положительный заряд, равный заряду электрона. Число электронов в оболочке атома определяется числом протонов в ядре.
Нейтрон – другой вид ядерных частиц всех элементов. Его нет лишь в ядре легкого водорода, состоящего из одного протона. Он не имеет заряда, электрически нейтрален. В атомном ядре нейтроны являются стабильными, а в свободном состоянии они неустойчивы. Число нейтронов в ядрах атомов одного и того же элемента может колебаться, поэтому число нейтронов в ядре не характеризует элемент.
Нуклоны (протоны + нейтроны) удерживаются внутри атомного ядра ядерными силами притяжения. Ядерные силы в 100 раз сильнее электромагнитных сил и поэтому удерживает внутри ядра одноименно заряженные протоны. Ядерные силы проявляются только на очень малых расстояниях (10 -13 см), они составляют потенциальную энергию связи ядра, которая при некоторых превращениях частично освобождается, переходит в кинетическую энергию.
Для атомов отличающихся составом ядра, употребляется название «нуклиды», а для радиоактивных атомов – «радионуклиды».
Нуклидами называют атомы или ядра с данным числом нуклонов и данным зарядом ядра (обозначение нуклида А Х).
Нуклиды, имеющие одинаковое число нуклонов (Ам = соnst), называются изобарами. Например, нуклиды 96 Sr, 96 Y, 96 Zr принадлежат к ряду изобаров с числом нуклонов Ам = 96.
Нуклиды, имеющие одинаковое число протонов (Z = соnst), называются изотопами. Они различаются только числом нейтронов, поэтому принадлежат одному и тому же элементу: 234 U, 235 U, 236 U, 238 U.
Изотопы – нуклиды с одинаковым числом нейтронов (N = Ам -Z = const). Нуклиды: 36 S, 37 Cl, 38 Ar, 39 K, 40 Ca принадлежат к ряду изотопов с 20 нейтронами.
Изотопы принято обозначать в виде ZХ М , где X – символ химического элемента; М – массовое число, равное сумме числа протонов и нейтронов в ядре; Z – атомный номер или заряд ядра, равный числу протонов в ядре. Поскольку каждый химический элемент имеет свой постоянный атомный номер, то его обычно опускают и ограничиваются написанием только массового числа, например: 3 Н, 14 С, 137 Сs, 90 Sr и т. д.
Атомы ядра, которые имеют одинаковые массовые числа, но разные заряды и, следственно, различные свойства называют «изобарами», так например один из изотопов фосфора имеет массовое число 32 – 15Р 32 , такое же массовое число имеет и один из изотопов серы – 16S 32 .
Нуклиды могут быть стабильными (если их ядра устойчивы и не распадаются) и нестабильными (если их ядра неустойчивы и подвергаются изменениям, приводящим в конечном итоге к увеличению стабильности ядра). Неустойчивые атомные ядра, способные самопроизвольно распадаться, называют радионуклидами. Явление самопроизвольного распада ядра атома, сопровождающееся излучением частиц и (или) электромагнитного излучения, называется радиоактивностью.
В результате радиоактивного распада может образоваться как стабильный, так и радиоактивный изотоп, в свою очередь, самопроизвольно распадающийся. Такие цепочки радиоактивных элементов, связанные серией ядерных превращений, называются радиоактивными семействами.
В настоящее время IUРАС (Международный союз теоретической и прикладной химии) официально дал название 109 химическим элементам. Из них только 81 имеет стабильные изотопы, наиболее тяжелым из которых является висмут (Z = 83). Для остальных 28 элементов известны только радиоактивные изотопы, причем уран (U
92) является самым тяжелым элементом, встречающимся в природе. Самый большой из природных нуклидов имеет 238 нуклонов. В общей сложности в настоящее время доказано существование порядка 1700 нуклидов этих 109 элементов, причем число изотопов, известных для отдельных элементов, колеблется от 3 (для водорода) до 29 (для платины).
Какие элементы имеют состав ядра. Состав и строение атомного ядра (кратко)
Модель атома кислорода:
Заряд ядра равен порядковому номеру химического элемента
Из курса физики вам известно, что вокруг положительного ядра находятся отрицательно заряженные частицы электроны – е – . В электронейтральном атоме число электронов должно быть равно заряду ядра и, следовательно, порядковому номеру элемента. Масса электрона очень мала и принимается равной нулю, таким образом, масса атома сосредоточена в ядре, в котором расположены протоны – p + и нейтроны – n .
Заряд ядра атома = Порядковому номеру (N) = Числу протонов = Число электронов
Число нейтронов = Атомная масса ( Ar ) – Порядковый номер (N)
Задача №1. Определите состав атома бора?
n 0 = Атомная масса (Ar) – Порядковый номер (N) = 11 – 5 = 6
Задача №2. Определите состав атома хлора?
n 0 = Атомная масса (Ar) – Порядковый номер (N) = 35,5 – 17 = 18,5
Почему в атоме хлора дробное число нейтронов?
Изотопы природного водорода:
Изотопы одного и того же химического элемента имеют разную массу, так как в их атомных ядрах содержится разное количество нейтронов.
Химический элемент – это вид атомов с одинаковым зарядом ядра.
В природе химические элементы существуют в виде смесей изотопов. Изотопный состав одного и того же химического элемента выражают в атомных долях (ωат.), которые указывают какую часть составляет число атомов данного изотопа от общего числа атомов всех изотопов данного элемента, принятого за единицу или 100%.
Почему в таблице Д. И. Менделеева для химических элементов относительные атомные массы представлены в виде дробных чисел?
В таблице Менделеева приведены средние значения относительных атомных масс химических элементов с учётом их изотопного состава. Поэтому Ar , указанные в таблице являются дробными.
Задача : Вычислите относительную атомную массу химического элемента хлора , если известно, что он состоит из двух изотопов: 35 Cl (атомная доля 75,4%) и 37 Cl (24.6%) .
Найти: Ar средняя ( Cl ) = ?
Ar средняя ( Cl ) = 0,754 ∙ 35 + 0,246 ∙ 37 = 35,453
Задания для закрепления
№1. Определите атомный состав изотопов хлора 35 Cl и 37 Сl. Почему изотопы хлора имеют разное массовое число?
№2. Определите относительную атомную массу элемента кремния, если известно, что он состоит из трёх изотопов: 28 Si (атомная доля 92,3%), 29 Si (4,7%), 30 Si (3%).
Источники:
http://www.syl.ru/article/203714/new_sostav-i-stroenie-atomnogo-yadra-kratko
http://studopedia.ru/4_170109_stroenie-atomnogo-yadra.html
http://www.sites.google.com/site/himulacom/zvonok-na-urok/8-klass/urok-no45-stroenie-atoma-sostav-atomnyh-ader-izotopy-himiceskij-element