Понятие модуля числа. Определение модуля числа. Геометрический смысл модуля

Определение модуля числа. Геометрический смысл модуля

Уравнения с модулями, методы решений. Часть 1.

Прежде чем приступать к непосредственному изучению техник решения таких уравнений, важно понять суть модуля, его геометрическое значение. Именно в понимании определения модуля и его геометрическом смысле, заложены основные методы решения таких уравнений. Так называемый, метод интервалов при раскрытии модульных скобок, настолько эффективен, что используя его возможно решить абсолютно любое уравнение или неравенство с модулями. В этой части мы подробно изучим два стандартных метода: метод интервалов и метод замены уравнения совокупностью.

Однако, как мы убедимся, эти методы, всегда эффективные, но не всегда удобные и могут приводить к долгим и даже не очень удобным вычислениям, которые естественно потребуют большего времени на их решение. Поэтому важно знать и те методы, которые решение определенных структур уравнений значительно упрощают. Возведение обеих частей уравнения в квадрат, метод введения новой переменной, графический метод, решение уравнений, содержащих модуль под знаком модуля. Эти методы мы рассмотрим в следующей части.

Определение модуля числа. Геометрический смысл модуля.

Первым делом познакомимся с геометрическим смыслом модуля:

Модулем числа а (|а|) называют расстояние на числовой прямой от начала координат (точки 0) до точки А(а).

Исходя из этого определения рассмотрим некоторые примеры:

|7|— это расстояние от 0 до точки 7, конечно оно равно 7. → | 7 |=7

|-5|- эторасстояние от 0 до точки -5 и оно равно: 5. → |-5| = 5

Все мы понимаем расстояние не может быть отрицательным! Поэтому |х| ≥ 0 всегда!

Решим уравнение: |х |=4

Это уравнение можно прочитать так: расстояние от точки 0 до точки x равно 4. Ага, получается, от 0 мы можем двигаться как влево так и вправо, значит двигаясь влево на расстояние равное 4 мы окажемся в точке: -4, а двигаясь вправо окажемся в точке: 4. Действительно, |-4 |=4 и |4 |=4.

Читать еще:  Как привлечь деньги по фен-шуй. Как привлечь деньги по фен-шую

Отсюда ответ х=±4.

При внимательном изучении предыдущего уравнения можно заметить, что: расстояние вправо по числовой прямой от 0 до точки равно самой точке, а расстояние влево от 0 до числа равно противоположному числу! Понимая, что вправо от 0 положительные числа, а влево от 0 отрицательные, сформулируем определения модуля числа: модулем (абсолютной величиной) числа х (|х|) называется само число х, если х ≥0, и число –х, если х

Важно, чтобы вы это четко видели, если пока не получается, нарисуйте на бумаге и посмотрите, чтобы эта иллюстрация была вам полностью понятна, не поленитесь и попробуйте в уме увидеть решения следующих заданий:

Обратили внимание на странные задания во втором столбце? Действительно, расстояние не может быть отрицательным поэтому: |х|=-5- не имеет решений, конечно же оно не может быть и меньше 0, поэтому: |х| -3 являются все числа.

После того как вы научитесь быстро видеть рисунки с решениями читайте дальше.

Модули. Применение геометрического смысла модуля при решений уравнений и неравенств

Классы: 9 , 10 , 11

Ключевые слова: модуль числа , свойства модуля , геометрический смысл модуля

Цель: Актуализировать знания школьников о смысле понятия «модуль». Учить их применять эти знания при решении уравнении, неравенств и систем уравнении с модулями.

Для того, чтобы научиться решать уравнения и неравенства с модулем, необходимо хорошо разобраться с понятием модуля, его геометрическим смыслом и свойствами.

С рассмотрения этого материала мы и начнем наше занятие.

1. Определение: Модулем числа называется само число, если оно неотрицательно, или число противоположное данному, если оно отрицательно.

Следовательно, при любых значениях переменной |а| есть число неотрицательное.

2. Рассмотрим основные свойства модуля, которые используются при решении уравнений и неравенств, содержащих модуль.

Свойства модуля

— Модуль числа есть величина неотрицательная: |а|>0 или равно 0.

— Модули противоположенных чисел равны: |а|= |-а|

Читать еще:  Самые длинные войны в истории человечества.

— Модуль произведения равен произведению модулей множителей: |а*в|= |а|*|в|.

— Модуль частного равен частному модулей числителя и знаменателя: |а/в|=|а|/|в|, где в не равен нулю.

— Квадрат модуля равен квадрату подмодульного выражения: |а| 2 =а 2 .

— Модуль суммы не больше суммы модулей ее слагаемых: |а+в|≤|а|+|в|.

При этом равенство |а+в|=|а|+|в| имеет место тогда и только тогда, когда слагаемые одного знака или одно из слагаемых равно нулю.

— Два числа, модули которых равны, либо равны между собой, либо отличаются только знаками, то есть являются противоположными: |а|=|в|, если, а=в или, а=–в.

Преобразование выражений, содержащих модули

При решении уравнении и неравенств с модулем, часто приходится преобразовывать их, раскрывая знак модуля.

Рассмотрим, по каким правилам раскрывается модуль.

Из определения модуля следует: чтобы раскрыть знак модуля, надо знать знак подмодульного выражения.

Составим схему раскрытия модуля:

а) если знак подмодульного выражения неотрицателен, то знак модуля опускается: |а| =а.

б) если знак подмодульного выражения отрицателен, то подмодульное выражение умножается на (-1), то есть заменяется противоположенным выражением: |а| =-1а.

Рассмотрим несколько примеров.

Пример 1.1

а) т.к. с 0, то -7х 5;

б) |3+х|, если х 5, то х-2 > 0, поэтому |х-2|=х-2;

в) т.к. х 0, |8-х|= 8 – х, х-6 (=) 2/3 3х – 2 >(=)0, следовательно, |3[ — 2|= 3х – 2.

4. Задания для самостоятельной работы

б) |- 3/7х|, если х 2 |, если а > 0;

г) |8 + х|, если х > -7;

д) |х — 5| — |х + 4|, если -3 13.

3. Решить неравенство самостоятельно:

4. Решить уравнение:

5. Решить уравнение:

6. Решить неравенство:

7. Найдите наибольшее натуральное значение параметра с при котором решение неравенства

  1. ||2х + 4| — 7| — 13 ≤ 2с 2 удовлетворяет условию х [-37; 35].

Это задание можно предложить сильным школьникам для домашней работы с последующей проверкой на уроке.

Решения и ответы:

1. Для решения уравнении используем рисунок на доске и правило: «Модуль — это расстояние»:

2. Для решения неравенства сделаем ещё два рисунка.

Значение выражения, стоящего под модулем, не должно превышать 2, значит

Читать еще:  Игры машины. Игры машины Играть в игры супер быстрые гоночные машины

Значение выражения, стоящего под модулем, должно быть больше, чем 48 единиц, значит:

18 – х ≥ 48 или 18 – х ≤ -48 => х ≤ -30 или х ≥66.

Модуль числа — знак, свойства, действия, как найти, примеры графиков

Модуль числа легко найти, и теория, которая лежит в его основе, важна при решении задач.

Свойства и правила раскрытия, используемые при решении упражнений и на экзаменах, будут полезны школьникам и студентам. Заработай деньги с помощью своих знаний на https://teachs.ru!

Что такое модуль в математике

Модуль числа описывает расстояние на числовой линии от нуля до точки без учета того, в каком направлении от нуля лежит точка. Математическое обозначение: |x|.

Иными словами, это абсолютная величина числа. Определение доказывает, что значение никогда не бывает отрицательным.

Свойства модуля

Важно помнить о следующих свойствах:

  1. Правило раскрытия: абсолютная величина любого числа больше или равна нулю:
  2. Если абсолютные значения содержат выражения противоположных значений, они равны:
  3. Значение числа не превышает величину его модуля:
  4. Правило раскрытия при произведении:
  5. Правило, применимое при делении:
  6. При возведении в степень:
  7. Сумма величин:
  8. Двойной модуль:

Модуль комплексного числа

Абсолютной величиной комплексного числа называют длину направленного отрезка, проведенного от начала комплексной плоскости до точки (a, b).

Этот направленный отрезок также является вектором, представляющим комплексное число a + bi, поэтому абсолютная величина комплексного числа – это то же самое, что и величина (или длина) вектора, представляющего a+ bi.

Как решать уравнения с модулем

Уравнение с модулем – это равенство, которое содержит выражение абсолютного значения. Если для действительного числа оно представляет его расстояние от начала координат на числовой линии, то неравенства с модулем являются типом неравенств, которые состоят из абсолютных значений.

Уравнения типа |x| = a

Уравнение |x| = a имеет два ответа x = a и x = –a, потому что оба варианта находятся на координатной прямой на расстоянии a от 0.

Равенство с абсолютной величиной не имеет решения, если величина отрицательная.

Источники:

http://lektsii.org/1-17730.html

http://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/676940/

Модуль числа — знак, свойства, действия, как найти, примеры графиков

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector